NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination.

The Solomon H. Snyder Department of Neuroscience and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 08/2011; 31(35):12650-62. DOI: 10.1523/JNEUROSCI.2455-11.2011
Source: PubMed

ABSTRACT Oligodendrocyte precursor cells (OPCs) express NMDA receptors (NMDARs) and form synapses with glutamatergic neurons throughout the CNS. Although glutamate influences the proliferation and maturation of these progenitors in vitro, the role of NMDAR signaling in oligodendrogenesis and myelination in vivo is not known. Here, we investigated the consequences of genetically deleting the obligatory NMDAR subunit NR1 from OPCs and their oligodendrocyte progeny in the CNS of developing and mature mice. NMDAR-deficient OPCs proliferated normally, achieved appropriate densities in gray and white matter, and differentiated to form major white matter tracts without delay. OPCs also retained their characteristic physiological and morphological properties in the absence of NMDAR signaling and were able to form synapses with glutamatergic axons. However, expression of calcium-permeable AMPA receptors (AMPARs) was enhanced in NMDAR-deficient OPCs. These results suggest that NMDAR signaling is not used to control OPC development but to regulate AMPAR-dependent signaling with surrounding axons, pointing to additional functions for these ubiquitous glial cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling via the major excitatory amino acid glutamate has been implicated in the regulation of various aspects of the biology of oligodendrocytes, the myelinating cells of the central nervous system (CNS). In this respect, cells of the oligodendrocyte lineage have been described to express a variety of glutamate-responsive transmembrane proteins including sodium-dependent glutamate transporters. The latter have been well characterized to mediate glutamate clearance from the extracellular space. However, there is increasing evidence that they also mediate glutamate-induced intracellular signaling events. Our data presented here show that the activation of oligodendrocyte expressed sodium-dependent glutamate transporters, in particular GLT-1 and GLAST, promotes the morphological aspects of oligodendrocyte maturation. This effect was found to be associated with a transient increase in intracellular calcium levels and a transient phosphorylation event at the serine (S)(371) site of the calcium sensor calcium/calmodulin-dependent kinase type IIβ (CaMKIIβ). The potential regulatory S(371) site is located within CaMKIIβ's previously defined actin-binding/-stabilizing domain, and phosphorylation events within this domain were identified in our studies as a requirement for sodium-dependent glutamate transporter-mediated promotion of oligodendrocyte maturation. Furthermore, our data provide good evidence for a role of these phosphorylation events in mediating detachment of CaMKIIβ from filamentous (F)-actin, and hence allowing a remodeling of the oligodendrocyte's actin cytoskeleton. Taken together with our recent findings, which demonstrated a crucial role of CaMKIIβ in regulating CNS myelination in vivo, our data strongly suggest that a sodium-dependent glutamate transporter-CaMKIIβ-actin cytoskeleton axis plays an important role in the regulation of oligodendrocyte maturation and CNS myelination. GLIA 2014.
    Glia 09/2014; 62(9). DOI:10.1002/glia.22699 · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron-glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin-neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clustering in glial postsynaptic density. To elucidate the role of NG2 in neuron-glia communication, we investigated glutamatergic synaptic transmission in juvenile and aged hippocampal NG2 cells of heterozygous and homozygous NG2 knockout mice. Neuron-NG2 cell synapses readily formed in the absence of NG2. Short-term plasticity, synaptic connectivity, postsynaptic AMPAR current kinetics, and density were not affected by NG2 deletion. During development, an NG2-independent acceleration of AMPAR current kinetics and decreased synaptic connectivity were observed. Our results indicate that the lack of NG2 does not interfere with genesis and basic properties of neuron-glia synapses. In addition, we demonstrate frequent expression of neuroligins 1-3 in juvenile and aged NG2 cells, suggesting a role of these molecules in synapse formation between NG2 glia and neurons.
    Cerebral Cortex 08/2014; DOI:10.1093/cercor/bhu171 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of the cellular prion protein (PrP(C)) to trigger intracellular signals appears central to neurodegeneration pathways, yet the physiological significance of such signals is rather puzzling. For instance, PrP(C) deregulation disrupts phenomena as diverse as synaptic transmission in mammals and cell adhesion in zebrafish. Although unrelated, the key proteins in these events -the NMDA receptor (NMDAR) and E-cadherin, respectively- are similarly modulated by the Src family kinase (SFK) Fyn. These observations highlight the importance of PrP(C)-mediated Fyn activation, a finding reported nearly two decades ago. Given their complex functions and regulation, SFKs may hold the key to intriguing aspects of PrP biology such as its seemingly promiscuous functions and the lack of strong phenotypes in knockout mice. Here we provide a mechanistic perspective on how SFKs might contribute to the uncertain molecular basis of neuronal PrP phenotypes affecting ion channel activity, axon myelination and olfactory function. In particular, we discuss SFK target proteins involved in these processes and the role of tyrosine phosphorylation in the regulation of their activity and cell surface expression.
    Frontiers in Cell and Developmental Biology 01/2014; 2:63. DOI:10.3389/fcell.2014.00063


Available from