Article

Development of a biomimetic peptide derived from collagen IV with anti-angiogenic activity in breast cancer

School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
Cancer biology & therapy (Impact Factor: 3.63). 11/2011; 12(9):808-17. DOI: 10.4161/cbt.12.9.17677
Source: PubMed

ABSTRACT Breast cancer is one of the most commonly diagnosed malignancies in women. Despite the remarkable success of mammography screening and use of adjuvant systemic therapy, it is estimated that approximately 200,000 new diagnoses will be made this year and 40,000 deaths will occur due to this disease (American Cancer Society). Angiogenesis, the growth of vessels from pre-existing microvasculature, is an essential component of tumor progression and has emerged as a therapeutic modality for anti-angiogenic therapies in cancer. Here we report in vitro and in vivo findings with a 20 amino acid peptide belonging to the collagen IV family, modified to facilitate possible translation to clinical applications. The two cysteines in its natural peptide progenitor were replaced by L-α-amino-n-butyric acid, a non-natural amino acid. The modified peptide was tested in vitro using endothelial cells and in vivo using mouse orthotopic breast cancer xenograft model with MDA-MB-231 human breast cancer cells. This modified peptide demonstrated no significant changes in activity from the parent peptide; however, because it lacks cysteines, it is more suitable for clinical translation. We also investigated its efficacy in combination with a commonly used chemotherapeutic agent paclitaxel; the inhibition of tumor growth by the peptide was similar to that of paclitaxel alone, but the combination did not exhibit any additional inhibition. We have performed further characterization of the mechanism of action (MOA) for this peptide to identify its target receptors, enhancing its translation potential as an anti-angiogenic, non-vascular endothelial growth factor (VEGF) targeting agent for therapy in breast cancer.

1 Follower
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is one of the leading causes of death worldwide. Conventional cancer therapies mainly focus on mass cell killing without high specificity and often cause severe side effects and toxicities. Peptides are a novel class of anticancer agents that could specifically target cancer cells with lower toxicity to normal tissues, which will offer new opportunities for cancer prevention and treatment. Anticancer peptides face several therapeutic challenges. In this review, we present the sources and mechanisms of anticancer peptides and further discuss modification strategies to improve the anticancer effects of bioactive peptides.
    Cancer Letters 08/2014; 351(1):13-22. DOI:10.1016/j.canlet.2014.05.002. · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is one of the leading causes of death worldwide. Conventional cancer therapies mainly focus on mass cell killing without high specificity and often cause severe side effects and toxicities. Peptides are a novel class of anticancer agents that could specifically target cancer cells with lower toxicity to normal tissues, which will offer new opportunities for cancer prevention and treatment. Anticancer peptides face several therapeutic challenges. In this review, we present the sources and mechanisms of anticancer peptides and further discuss modification strategies to improve the anticancer effects of bioactive peptides.
    Cancer Letters 05/2014; DOI:10.1016/j.canlet.2014.05.002 · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is the main cause of mortality in cancer patients. Though there are many anti-cancer drugs targeting primary tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression, particularly, lymphangiogenesis is pivotal for metastasis in breast cancer. Here we report that a novel collagen IV derived biomimetic peptide inhibits breast cancer growth and metastasis by blocking angiogenesis and lymphangiogenesis. The peptide inhibits blood and lymphatic endothelial cell viability, migration, adhesion, and tube formation by targeting IGF1R and Met signals. The peptide blocks MDA-MB-231 tumor growth by inhibiting tumor angiogenesis in vivo. Moreover, the peptide inhibits lymphangiogenesis in primary tumors. MDA-MB-231 tumor conditioned media (TCM) was employed to accelerate spontaneous metastasis in tumor xenografts, and the anti-metastatic activity of the peptide was tested in this model. The peptide prevents metastasis to the lungs and lymph nodes by inhibiting TCM-induced lymphangiogenesis and angiogenesis in the pre-metastatic organs. In summary, a novel biomimetic peptide inhibits breast cancer growth and metastasis by blocking angiogenesis and lymphangiogenesis in the pre-metastatic organs as well as primary tumors.
    Scientific Reports 11/2014; 4:7139. DOI:10.1038/srep07139 · 5.08 Impact Factor

Full-text

Download
51 Downloads
Available from
May 21, 2014