Article

Merlin/NF2 Functions Upstream of the Nuclear E3 Ubiquitin Ligase CRL4(DCAF1) to Suppress Oncogenic Gene Expression

Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
Science Signaling (Impact Factor: 7.65). 08/2011; 4(188):pt6. DOI: 10.1126/scisignal.2002314
Source: PubMed

ABSTRACT Integrin-mediated activation of PAK (p21-activated kinase) causes phosphorylation and inactivation of the FERM (4.1, ezrin, radixin, moesin) domain-containing protein Merlin, which is encoded by the NF2 (neurofibromatosis type 2) tumor suppressor gene. Conversely, cadherin engagement inactivates PAK, thus leading to accumulation of unphosphorylated Merlin. Current models imply that Merlin inhibits cell proliferation by inhibiting mitogenic signaling at or near the plasma membrane. We have recently shown that the unphosphorylated, growth-inhibiting form of Merlin accumulates in the nucleus and binds to the E3 ubiquitin ligase CRL4(DCAF1) to suppress its activity. Depletion of DCAF1 blocks the hyperproliferation caused by inactivation of Merlin. Conversely, expression of a Merlin-insensitive DCAF1 mutant counteracts the antimitogenic effect of Merlin. Expression of Merlin or silencing of DCAF1 in Nf2-deficient cells induce an overlapping, tumor-suppressive program of gene expression. Mutations present in some tumors from NF2 patients disrupt Merlin's ability to interact with or inhibit CRL4(DCAF1). Lastly, depletion of DCAF1 inhibits the hyperproliferation of Schwannoma cells isolated from NF2 patients and suppresses the oncogenic potential of Merlin-deficient tumor cell lines. Current studies are aimed at identifying the substrates and mechanism of action of CRL4(DCAF1) and examining its role in NF2-dependent tumorigenesis in mouse models. We propose that Merlin mediates contact inhibition and suppresses tumorigenesis by translocating to the nucleus to inhibit CRL4(DCAF1).

Download full-text

Full-text

Available from: Hediye Erdjument-Bromage, May 05, 2015
0 Followers
 · 
223 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Focal adhesion kinase (FAK) is a protein tyrosine kinase (PTK) crucial in regulation of cell migration and proliferation. In addition to its canonical roles as a cytoplasmic kinase downstream of integrin and growth factor receptor signaling, recent studies revealed new aspects of FAK action in the nucleus. Nuclear FAK promotes p53 and GATA4 degradation via ubiquitination, resulting in enhanced cell proliferation and reduced inflammatory responses. FAK can also serve as a co-transcriptional regulator that alters a gene transcriptional activity. These findings established a new paradigm of FAK signaling from cellular adhesions to the nucleus. Although physiological stimuli for controlling FAK nuclear localization have not been completely characterized, FAK shuttles from focal adhesions to the nucleus to directly convey extracellular signals. Interestingly, nuclear translocation of FAK becomes prominent in kinase-inhibited conditions such as in de-adhesion and pharmacological FAK inhibition, while a small fraction of nuclear FAK is observed a normal growth condition. In this review, roles of nuclear FAK in regulating transcription factors will be discussed. Furthermore, a potential use of a pharmacological FAK inhibitor to target nuclear FAK function in diseases such as inflammation will be emphasized.
    Moleculer Cells 05/2013; 36(1). DOI:10.1007/s10059-013-0139-1 · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vestibular schwannomas (VS), benign intracranial tumors originating from the vestibulocochlear nerve, usually present with hearing loss, tinnitus, and balance dysfunction. Rarely, however, if untreated, these neoplasms can cause significant patient compromise - resulting in facial paralysis, brainstem compression, and even death. Those with vestibular schwannomas currently choose between surgery and stereotactic radiation therapy as available treatment options. Unfortunately, no medical therapies are presently U.S. Food & Drug Administration approved, representing an urgent and unmet clinical need. Recent breakthroughs in research have discovered key cell surface receptors and intracellular signaling pathways that drive vestibular schwannoma tumorigenesis, proliferation, and survival. A number of promising inhibitors targeting these signaling molecules have also now shown efficacy in preclinical VS cell culture models and animal experiments, with some recently entering human clinical trials. In this review, we summarize ErbB receptor signaling, PDGF receptors, MAP kinase signaling, AKT, p21-activated kinase signaling, mTOR, and VEGF signaling in the context of vestibular schwannoma drug development efforts worldwide. Today, it is truly an exciting time as our specialty stands on the verge of major breakthroughs in the development of medical therapies for VS.
    Otolaryngologia polska. The Polish otolaryngology 03/2012; 66(2):84-95. DOI:10.1016/S0030-6657(12)70754-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurofibromatosis type 2 (NF2), characterized by tumors of the nervous system, is a result of functional loss of the NF2 gene. The NF2 gene encodes Merlin (moesin-ezrin-radixin-like protein), an ERM (Ezrin, Radixin, Moesin) protein family member. Merlin functions as a tumor suppressor through impacting mechanisms related to proliferation, apoptosis, survival, motility, adhesion, and invasion. Several studies have summarized the tumor intrinsic mutations in Merlin. Given the fact that tumor cells are not in isolation, but rather in an intricate, mutually sustaining synergy with their surrounding stroma, the dialog between the tumor cells and the stroma can potentially impact the molecular homeostasis and promote evolution of the malignant phenotype. This review summarizes the epigenetic modifications, transcript stability, and post-translational modifications that impact Merlin. We have reviewed the role of extrinsic factors originating from the tumor milieu that influence the availability of Merlin inside the cell. Information regarding Merlin regulation could lead to novel therapeutics by stabilizing Merlin protein in tumors that have reduced Merlin protein expression without displaying any NF2 genetic alterations.
    Biochimica et Biophysica Acta 06/2012; 1826(12):400-6. DOI:10.1016/j.bbcan.2012.06.005 · 4.66 Impact Factor