Article

Identification of mammalian protein complexes by lentiviral-based affinity purification and mass spectrometry.

Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2011; 781:31-45. DOI: 10.1007/978-1-61779-276-2_2
Source: PubMed

ABSTRACT Protein complexes and protein-protein interactions (PPIs) are fundamental for most biological functions. Deciphering the extensive protein interaction networks that occur within cellular contexts has become a logical extension to the human genome project. Proteome-scale interactome analysis of mammalian systems requires efficient methods for accurately detecting PPIs with specific considerations for the intrinsic technical challenges of mammalian genome manipulation. In this chapter, we outline in detail an innovative lentiviral-based functional proteomic approach that can be used to rapidly characterize protein complexes from a broad range of mammalian cell lines. This method integrates the following key features: (1) lentiviral elements for efficient delivery of tagged constructs into mammalian cell lines; (2) site-specific Gateway™ recombination sites for easy cloning; (3) versatile epitope-tagging system for flexible affinity purification strategies; and (4) LC-MS-based protein identification using tandem mass spectrometry.

0 Followers
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods.ResultsOn the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments.Conclusions The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.
    BMC Bioinformatics 11/2014; 15(1). DOI:10.1186/s12859-014-0383-1 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lytic infection by herpesviruses induces cell cycle arrest at the G1/S transition. This appears to be a function of multiple herpesvirus proteins but only a minority of herpesvirus proteins have been examined for cell cycle effects. To gain a more comprehensive understanding of the viral proteins that contribute to G1/S arrest, we screened a library of over 200 proteins from herpes simplex virus type 1, human cytomegalovirus and Epstein-Barr virus (EBV) for effects on the G1/S interface, using HeLa Fucci cells in which G1/S can be detected colorimetrically. Proteins from each virus were identified that induce accumulation of G1/S cells, predominantly tegument, early and capsid proteins. The identification of several capsid proteins in this screen suggests that incoming viral capsids may function to modulate cellular processes. The cell cycle effects of selected EBV proteins were further verified and examined for effects on p53 and p21 as regulators of the G1/S transition. Two EBV replication proteins (BORF2 and BMRF1) were found to induce p53 but not p21, while a previously uncharacterized tegument protein (BGLF2) was found to induce p21 protein levels in a p53-independent manner. Proteomic analyses of BGLF2-interacting proteins identified interactions with NEK9 kinase and GEM interacting protein (GMIP). Silencing of either NEK9 or GMIP induced p21 without affecting p53 and abrogated the ability of BGLF2 to further induce p21. Collectively, these results suggest multiple viral proteins contribute to G1/S arrest, including BGLF2, which induces p21 levels likely by interfering with the functions of NEK9 and GMIP.Importance: Most people are infected with multiple herpesviruses, whose proteins alter the infected cells in several ways. During lytic infection, the viral proteins block cell proliferation just before the cellular DNA replicates. We used a novel screening method to identify proteins from three different herpesviruses that contribute to this block. Several of the proteins we identified had previously unknown functions or were structural components of the virion. Subsets of these proteins from Epstein-Barr virus were studied for their effects on the cell cycle regulatory proteins p53 and p21, thereby identifying two proteins that induce p53 and one that induces p21 (BGLF2). We identified interactions of BGLF2 with two human proteins, both of which regulate p21, suggest that BGLF2 induces p21 by interfering with the functions of these two host proteins. Our study indicates that multiple herpesvirus proteins contribute to the cell proliferation block, including components of the incoming virions.
    Journal of Virology 02/2014; DOI:10.1128/JVI.00059-14 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The RNA polymerase II (RNAPII) C-terminal domain (CTD) heptapeptide repeats (1-YSPTSPS-7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD-interaction domains (CIDs) with RNAPII CTD repeats phosphorylated at S2 and S7. Crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with RNAPII CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2.
    Nature Structural & Molecular Biology 07/2014; DOI:10.1038/nsmb.2853 · 11.63 Impact Factor