Article

Genome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee

The Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
PLoS Genetics (Impact Factor: 8.17). 08/2011; 7(8):e1002237. DOI: 10.1371/journal.pgen.1002237
Source: PubMed

ABSTRACT Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P(2df) = 10(-6), GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR = 0.43; P = 6×10(-7)) but not in light coffee-drinkers. The a priori Replication hypothesis that "Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers" was confirmed: OR(Replication) = 0.59, P(Replication) = 10(-3); OR(Pooled) = 0.51, P(Pooled) = 7×10(-8). Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P = 3×10(-3)), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P = 6×10(-13)). Imputation revealed a block of SNPs that achieved P(2df)<5×10(-8) in GWAIS, and OR = 0.41, P = 3×10(-8) in heavy coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify genes that are missed in GWAS. Both adenosine antagonists (caffeine-like) and glutamate antagonists (GRIN2A-related) are being tested in clinical trials for treatment of PD. GRIN2A may be a useful pharmacogenetic marker for subdividing individuals in clinical trials to determine which medications might work best for which patients.

Download full-text

Full-text

Available from: Liyong Wang, Aug 11, 2015
0 Followers
 · 
312 Views
  • Source
    • "Excluding external factors that influence internal biological processes generates an incomplete system at best, likely an inaccurate understanding of the interactions between environment and genetic makeup, and from a practical standpoint, misses an opportunity to identify modifiable factors that influence health. This report details the design and conduct of a discovery-based pilot study that accounts for (1) the known genetic uniqueness of individual humans (Olson 2012), (2) the intra-individual variability in homeostatic measurements (Williams 1956; Illig et al. 2010; Suhre et al. 2011), and (3) the challenge of characterizing complex phenotypes resulting from small contributions of many genetic and environmental factors (Goldstein 2009). The participants in the Delta Vitamin Obesity intervention study were children and teens (age 6–14) enrolled in a summer day camp that was a component of a community-based participatory research (CBPR) program. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of vitamins and clarification of their role in preventing frank essential nutrient deficiencies occurred in the early 1900s. Much vitamin research has understandably focused on public health and the effects of single nutrients to alleviate acute conditions. The physiological processes for maintaining health, however, are complex systems that depend upon interactions between multiple nutrients, environmental factors, and genetic makeup. To analyze the relationship between these factors and nutritional health, data were obtained from an observational, community-based participatory research program of children and teens (age 6–14) enrolled in a summer day camp in the Delta region of Arkansas. Assessments of erythrocyte S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), plasma homocysteine (Hcy) and 6 organic micronutrients (retinol, 25-hydroxy vitamin D3, pyridoxal, thiamin, riboflavin, and vitamin E), and 1,129 plasma proteins were performed at 3 time points in each of 2 years. Genetic makeup was analyzed with 1 M SNP genotyping arrays, and nutrient status was assessed with 24-h dietary intake questionnaires. A pattern of metabolites (met_PC1) that included the ratio of erythrocyte SAM/SAH, Hcy, and 5 vitamins were identified by principal component analysis. Met_PC1 levels were significantly associated with (1) single-nucleotide polymorphisms, (2) levels of plasma proteins, and (3) multilocus genotypes coding for gastrointestinal and immune functions, as identified in a global network of metabolic/protein–protein interactions. Subsequent mining of data from curated pathway, network, and genome-wide association studies identified genetic and functional relationships that may be explained by gene–nutrient interactions. The systems nutrition strategy described here has thus associated a multivariate metabolite pattern in blood with genes involved in immune and gastrointestinal functions. Electronic supplementary material The online version of this article (doi:10.1007/s12263-014-0408-4) contains supplementary material, which is available to authorized users.
    Genes & Nutrition 07/2014; 9(4):408. DOI:10.1007/s12263-014-0408-4 · 3.42 Impact Factor
  • Source
    • "Heavy coffee drinkers have been known for some time to have a reduced risk of developing Parkinson disease. However, the risk of developing Parkinson disease has been found to be reduced even further for heavy coffee drinkers by a specific variant in the GRIN2A gene; compared to light coffee drinkers with an rs4998386_CC genotype, heavy coffee drinkers with the same genotype have an 18 % lower risk, whereas heavy coffee drinkers with an rs4998386_TC genotype have a 59 % lower risk (Hamza et al. 2011). More unusually, altitude has been reported to act as a modifier of the phenotypic severity of hereditary paraganglioma type 1 caused by mutations in the succinate dehydrogenase D (SDHD) gene (Astrom et al. 2003). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Some individuals with a particular disease-causing mutation or genotype fail to express most if not all features of the disease in question, a phenomenon that is known as 'reduced (or incomplete) penetrance'. Reduced penetrance is not uncommon; indeed, there are many known examples of 'disease-causing mutations' that fail to cause disease in at least a proportion of the individuals who carry them. Reduced penetrance may therefore explain not only why genetic diseases are occasionally transmitted through unaffected parents, but also why healthy individuals can harbour quite large numbers of potentially disadvantageous variants in their genomes without suffering any obvious ill effects. Reduced penetrance can be a function of the specific mutation(s) involved or of allele dosage. It may also result from differential allelic expression, copy number variation or the modulating influence of additional genetic variants in cis or in trans. The penetrance of some pathogenic genotypes is known to be age- and/or sex-dependent. Variable penetrance may also reflect the action of unlinked modifier genes, epigenetic changes or environmental factors. At least in some cases, complete penetrance appears to require the presence of one or more genetic variants at other loci. In this review, we summarize the evidence for reduced penetrance being a widespread phenomenon in human genetics and explore some of the molecular mechanisms that may help to explain this enigmatic characteristic of human inherited disease.
    Human Genetics 07/2013; 132(10). DOI:10.1007/s00439-013-1331-2 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson disease (PD) is the second most common neurodegenerative disorder. In most instances, PD is thought to result from a complex interaction between multiple genetic and environmental factors, though rare monogenic forms of the disease do exist. Mutations in 6 genes (SNCA, LRRK2, PRKN, DJ1, PINK1, and ATP13A2) have conclusively been shown to cause familial parkinsonism. In addition, common variation in 3 genes (MAPT, LRRK2, and SNCA) and loss-of-function mutations in GBA have been well-validated as susceptibility factors for PD. The function of these genes and their contribution to PD pathogenesis remain to be fully elucidated. The prevalence, incidence, clinical manifestations, and genetic components of PD are discussed in this review.
    Journal of Geriatric Psychiatry and Neurology 10/2010; 23(4):228-42. DOI:10.1177/0891988710383572 · 1.63 Impact Factor
Show more