Article

Discovery of Carboxyethylpyrroles (CEPs): Critical Insights into AMD, Autism, Cancer, and Wound Healing from Basic Research on the Chemistry of Oxidized Phospholipids

Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA.
Chemical Research in Toxicology (Impact Factor: 4.19). 08/2011; 24(11):1803-16. DOI: 10.1021/tx200206v
Source: PubMed

ABSTRACT Basic research, exploring the hypothesis that 2-(ω-carboxyethyl)pyrrole (CEP) modifications of proteins are generated nonenzymatically in vivo is delivering a bonanza of molecular mechanistic insights into age-related macular degeneration, autism, cancer, and wound healing. CEPs are produced through covalent modification of protein lysyl ε-amino groups by γ-hydroxyalkenal phospholipids that are formed by oxidative cleavage of docosahexaenate-containing phospholipids. Chemical synthesis of CEP-modified proteins and the production of highly specific antibodies that recognize them preceded and facilitated their detection in vivo and enabled exploration of their biological occurrence and activities. This investigational approach, from the chemistry of biomolecules to disease phenotype, is proving to be remarkably productive.

0 Followers
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Basic research, exploring the hypothesis that γ-hydroxyalkenal phospholipids are generated in vivo through oxidative cleavage of polyunsaturated phospholipids, is delivering a bonanza of molecular mechanistic insights into cardiovascular disease. Rather than targeting a specific pathology, these studies were predicated on the presumption that a fundamental understanding of lipid oxidation is likely to provide critical insights into disease processes. This investigational approach, from the chemistry of biomolecules to disease phenotype, that complements the more common opposite paradigm, is proving remarkably productive.
    Chemical Research in Toxicology 08/2011; 24(11):1791-802. DOI:10.1021/tx200207z · 4.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxygen is essential for the growth and function of mammalian cells. However, imbalances in oxygen or abnormalities in the ability of a cell to respond to oxygen levels can result in oxidative stress. Oxidative stress plays an important role in a number of diseases including atherosclerosis, rheumatoid arthritis, cancer, neurodegenerative diseases and asthma. When membrane lipids are exposed to high levels of oxygen or derived oxidants, they undergo lipid peroxidation to generate oxidized phospholipids (oxPL). Continual exposure to oxidants and decomposition of oxPL results in the formation of reactive electrophiles, such as 4-hydroxy-2-nonenal (HNE). Reactive lipid electrophiles have been shown to covalently modify DNA and proteins. Furthermore, exposure of cells to lipid electrophiles results in the activation of cytoprotective signaling pathways in order to promote cell survival and recovery from oxidant stress. However, if not properly managed by cellular detoxification mechanisms, the continual exposure of cells to electrophiles results in cytotoxicity. The following perspective will discuss the biological importance of lipid electrophile protein adducts including current strategies employed to identify and isolate protein adducts of lipid electrophiles as well as approaches to define cellular signaling mechanisms altered upon exposure to electrophiles. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
    Biochimica et Biophysica Acta 04/2012; 1818(10):2424-35. DOI:10.1016/j.bbamem.2012.04.014 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells have been extensively studied for their uses in various therapies because of their capacities to produce therapeutic proteins and recreate new tissues. It has often been suggested that the efficacy of cell therapies can greatly be improved through the ability to localize and regulate cellular activities at a transplantation site; however, the technologies for this control are lacking. Therefore, this study reports a cell-Laden hydrogel patch engineered to support the proliferation and angiogenic growth factor expression of cells adhered to their surfaces, and to further promote neovascularization. Hydrogels consisting of alginate chemically linked with pyrrole units, termed alginate-g-pyrrole, were prepared through an oxidative cross-linking reaction between pyrrole units. Fibroblasts adhered to the alginate-g-pyrrole hydrogels, and exhibited increased proliferation and overall vascular endothelial growth factor (VEGF) expression, compared to those on pyrrole-free hydrogels. Furthermore, the alginate-g-pyrrole hydrogel surfaces were modified to present microposts, subsequently increasing the amount of pyrrole units on their surfaces. Cells adhered to the microfabricated gel surfaces exhibited increased proliferation and overall VEGF expression proportional to the density of the microposts. The resulting micropatterned alginate-g-pyrrole hydrogels exhibited increases in the size and density of mature blood vessels when implanted on chick chorioallantoic membranes (CAMs). The hydrogel system developed in this study will be broadly useful for improving the efficacy of a wide array of cell-based wound healing and tissue regenerative therapies.
    Biomaterials 07/2012; 33(31):7718-26. DOI:10.1016/j.biomaterials.2012.07.001 · 8.31 Impact Factor

Preview

Download
1 Download
Available from