Article

Mitochondrial biogenesis and PGC-1α deacetylation by chronic treadmill exercise: differential response in cardiac and skeletal muscle.

Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392 Giessen, Germany.
Archiv für Kreislaufforschung (Impact Factor: 5.96). 08/2011; 106(6):1221-34. DOI: 10.1007/s00395-011-0213-9
Source: PubMed

ABSTRACT Posttranslational modifications of the transcriptional coactivator PGC-1α by the deacetylase SIRT1 and the kinase AMPK are involved in exercise-induced mitochondrial biogenesis in skeletal muscle. However, similar investigations have not been performed in the left ventricle (LV). Here, we tested whether treadmill training (12 weeks) modifies PGC-1α and mitochondrial biogenesis in gastrocnemius muscle and LV of C57BL/6 J wild-type mice and IL-6-deficient mice with a reported impairment in muscular AMPK activation similarly. Physical activity lowered the plasma insulin and glucose in both mouse strains, suggesting improved insulin sensitivity. The gastrocnemius muscle of IL-6-deficient mice showed reduced mitochondrial respiration and enzyme activity, which was partially normalized after training. Chronic exercise enhanced the mitochondrial biogenesis in gastrocnemius muscle as indicated by increased mRNA or protein expression of primary mitochondrial transcripts, higher mtDNA content and increased citrate synthase activity. Parallel to these changes, we observed AMPK activation, SIRT1 induction and PGC-1α deacetylation. Chronic treadmill training resulted in a mild cardiac hypertrophy in both mouse strains. However, none of these changes observed in skeletal muscle were detected in the LV (both mouse strains) with the exception of AMPK activation and a mildly increased succinate-dependent respiration. Thus, chronic endurance training induces a sustained mitochondrial biogenic response in mouse gastrocnemius muscle but not in the LV. Although AMPK activation occurs in both muscular organs, the absence of SIRT1-dependent PGC-1α deacetylation may be responsible for this significant difference. AMPK activation by IL-6 appears to be dispensable for the mitochondrial biogenic responses to chronic treadmill exercise.

0 Bookmarks
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The heart adapts to exercise stimuli in a sex dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 weeks) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free, diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared to soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only TGF-β1 shows a significant 3-way interaction with no genes showing a 2-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet and sex.
    AJP Heart and Circulatory Physiology 11/2014; · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genioglossal dysfunction is involved in the pathophysiology of obstructive sleep apnea hypoxia syndrome (OSAHS) characterized by nocturnal chronic intermittent hypoxia (CIH). The pathophysiology of genioglossal dysfunction and possible targeted pharmacotherapy for alleviation of genioglossal injury in CIH require further investigation.
    PLoS ONE 10/2014; 9(10):e109284. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exercise training offers cardioprotection against ischemia and reperfusion (I/R) injury. However, few essential signals have been identified to underscore the protection from injury. In the present study, we hypothesized that exercise-induced acceleration of myocardial tissue oxygenation recovery contributes to this protection. C57BL/6 mice (4 weeks old) were trained on treadmills for 45 min/day at a treading rate of 15 m/min for 8 weeks. At the end of 8-week exercise training, mice underwent 30-min left anterior descending coronary artery occlusion followed by 60-min or 24-h reperfusion. Electron paramagnetic resonance oximetry was performed to measure myocardial tissue oxygenation. Western immunoblotting analyses, gene transfection, and myography were examined. The oximetry study demonstrated that exercise markedly shortened myocardial tissue oxygenation recovery time following reperfusion. Exercise training up-regulated Kir6.1 protein expression (a subunit of ATP-sensitive K+ channel on vascular smooth muscle cells, VSMC sarc-KATP) and protected the heart from I/R injury. In vivo gene transfer of dominant negative Kir6.1AAA prolonged the recovery time and enlarged infarct size. In addition, transfection of Kir6.1AAA increased the stiffness and reduced the relaxation capacity in the vasculature. Together, our study demonstrated that exercise training up-regulated Kir6.1, improved tissue oxygenation recovery, and protected the heart against I/R injury. This exercise-induced cardioprotective mechanism may provide a potential therapeutic intervention targeting VSMC sarc-KATP channels and reperfusion recovery.
    PLoS ONE 12/2014; 9(12):e114205. · 3.53 Impact Factor

Full-text

Download
10 Downloads
Available from
Nov 17, 2014