Article

Endogenously EGFP-Labeled Mouse Embryonic Stem Cells.

Touro University College of Pharmacy, Vallejo, CA 94592, USA.
Aging and disease 02/2011; 2(1):18-29.
Source: PubMed

ABSTRACT Transplantation of embryonic stem cell (ESC)-derived precursors holds great promise for treating various disease conditions. Tracing of precursors derived from ESC after transplantation is important to determine their migration and fate. Chemical labeling, as well as transfection or viral-mediated transduction of tracer genes in ESC or in ESC-derived precursors, which are the methods that have been used in the generation of the vast majority of labeled ESCs, have serious drawbacks such as varying efficacy. To circumvent this problem we generated endogenously traceable mouse (m)ESC clones by direct derivation from blastocysts of transgenic mice expressing enhanced green fluorescent protein (EGFP) under control of the housekeeping β-actin promoter The only previous report of endogenously EGFP-labeled mESC derived directly from transgenic EGFP embryos is that of Ahn and colleagues (Ahn et al, 2008. Cytotherapy 10:759-769), who used embryos from a different transgenic line and used a significantly different protocol for derivation. Cells from a high-expressing EGFP-mESC clone, G11, retain high levels of EGFP expression after differentiation into derivatives of all three primary germ layers both in vitro and in vivo, and contribution to all tissues in chimeric progeny. To determine whether progenitor cells derived from G11 could be used in transplantation experiments, we differentiated them to early neuronal precursors and injected them into syngeneic mouse brains. Transplanted EGFP-expressing cells at different stages of differentiation along the neuronal lineage could be identified in brains by expression of EGFP twelve weeks after transplantation. Our results suggest that the EGFP-mESC(G11) line may constitute a useful tool in ESC-based cell and tissue replacement studies.

0 Followers
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.
    Proceedings of the National Academy of Sciences 01/1982; 78(12):7634-8. DOI:10.1073/pnas.78.12.7634 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic stem (ES) cells are pluripotent and capable of self-renewal, thus holding promise for regenerative medicine. Recent studies have begun to provide insights into the molecular mechanisms underlying pluripotency and self-renewal. In this article, we discuss the roles of transcriptional regulation, epigenetic regulation and miRNAs in the maintenance of pluripotency and the differentiation of ES cells.
    Human Molecular Genetics 04/2008; 17(R1):R23-7. DOI:10.1093/hmg/ddn050 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Unlike normal somatic cells, human embryonic stem cells (hESCs) can proliferate indefinitely in culture in an undifferentiated state where they do not appear to undergo senescence and yet remain nontransformed. Cells maintain their pluripotency both in vivo and in vitro, exhibit high telomerase activity, and maintain telomere length after prolonged in vitro culture. Thus, hESCs may provide an unlimited cell source for replacement in a number of aging-related neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease as well as other neurological disorders including spinal cord injuries. The ability of hESCs to bypass senescence is lost as hESCs differentiate into fully differentiated somatic cells. Evidence has been accumulated that differences in telomere length, telomerase activity, cell cycle signaling, DNA repair ability, as well as the lack of genomic, mitochondrial and epigenetic changes, may contribute to the lack of senescence in hESC. In this manuscript, we will review recent advances in characterizing hESCs and monitoring changes in these aspects in prolonged cultures. We will focus on the potential roles of several cellular pathways including the telomerase, p53 and the Rb pathways in escaping senescence in hESCs. We will also discuss the genomic and epigenetic changes in long-term hESC culture and their potential roles in bypassing senescence.
    Neuroscience 05/2007; 145(4):1348-58. DOI:10.1016/j.neuroscience.2006.09.017 · 3.33 Impact Factor

Full-text (2 Sources)

Download
46 Downloads
Available from
Jun 2, 2014