Article

Spontaneous Gac mutants of Pseudomonas biological control strains: cheaters or mutualists?

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA.
Applied and Environmental Microbiology (Impact Factor: 3.95). 08/2011; 77(20):7227-35. DOI: 10.1128/AEM.00679-11
Source: PubMed

ABSTRACT Bacteria rely on a range of extracellular metabolites to suppress competitors, gain access to resources, and exploit plant or animal hosts. The GacS/GacA two-component regulatory system positively controls the expression of many of these beneficial external products in pseudomonad bacteria. Natural populations often contain variants with defective Gac systems that do not produce most external products. These mutants benefit from a decreased metabolic load but do not appear to displace the wild type in nature. How could natural selection maintain the wild type in the presence of a mutant with enhanced growth? One hypothesis is that Gac mutants are "cheaters" that do not contribute to the public good, favored within groups but selected against between groups, as groups containing more mutants lose access to ecologically important external products. An alternative hypothesis is that Gac mutants have a mutualistic interaction with the wild type, so that each variant benefits by the presence of the other. In the biocontrol bacterium Pseudomonas chlororaphis strain 30-84, Gac mutants do not produce phenazines, which suppress competitor growth and are critical for biofilm formation. Here, we test the predictions of these alternative hypotheses by quantifying interactions between the wild type and the phenazine- and biofilm-deficient Gac mutant within growing biofilms. We find evidence that the wild type and Gac mutants interact mutualistically in the biofilm context, whereas a phenazine-defective structural mutant does not. Our results suggest that the persistence of alternative Gac phenotypes may be due to the stabilizing role of local mutualistic interactions.

Download full-text

Full-text

Available from: William W Driscoll, Jun 23, 2015
0 Followers
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbial cooperation typically consists in the sharing of secreted metabolites (referred to as public goods) within the community. Although public goods generally promote population growth, they are also vulnerable to exploitation by cheating mutants, which no longer contribute, but still benefit from the public goods produced by others. Although previous studies have identified a number of key factors that prevent the spreading of cheaters, little is known about how these factors interact and jointly shape the evolution of microbial cooperation. Here, we address this issue by investigating the interaction effects of cell diffusion, cell density, public good diffusion and durability (factors known to individually influence costs and benefits of public goods production) on selection for cooperation. To be able to quantify these effects across a wide parameter space, we developed an individual-based simulation platform, consisting of digital cooperator and cheater bacteria inhabiting a finite two-dimensional continuous toroidal surface. Our simulations, which closely mimic microbial microcolony growth, revealed that: (i) either reduced cell diffusion (which keeps cooperators together) or reduced public good diffusion (which keeps the public goods closer to the producer) is not only essential but also sufficient for cooperation to be promoted; (ii) the sign of selection for or against cooperation can change as a function of cell density and in interaction with diffusion parameters; and (iii) increased public goods durability has opposing effects on the evolution of cooperation depending on the level of cell and public good diffusion. Our work highlights that interactions between key parameters of public goods cooperation give rise to complex fitness landscapes, a finding that calls for multifactorial approaches when studying microbial cooperation in natural systems.
    Journal of Evolutionary Biology 06/2014; 27(9). DOI:10.1111/jeb.12437 · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An aggressive root colonizer, Pseudomonas chlororaphis O6 produces various secondary metabolites that impact plant health. The sensor kinase GacS is a key regulator of the expression of biocontrol-related traits. Biofilm formation is one such trait because of its role in root surface colonization. This paper focuses on the effects of carbon source on biofilm formation. In comparison with the wild type, a gacS mutant formed biofilms at a reduced level with sucrose as the major carbon source but at much higher level with mannitol in the defined medium. Biofilm formation by the gacS mutant occurred without phenazine production and in the absence of normal levels of acyl homoserine lactones, which promote biofilms with other pseudomonads. Colonization of tomato roots was similar for the wild type and gacS mutant, showing that any differences in biofilm formation in the rhizosphere were not of consequence under the tested conditions. The reduced ability of the gacS mutant to induce systemic resistance against tomato leaf mold and tomato gray mold was consistent with a lack of production of effectors, such as phenazines. These results demonstrated plasticity in biofilm formation and root colonization in the rhizosphere by a beneficial pseudomonad.
    Canadian Journal of Microbiology 03/2014; 60(3):133-8. DOI:10.1139/cjm-2013-0736 · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many microbes cooperatively secrete extracellular products that favorably modify their environment. Consistent with social evolution theory, structured habitats play a role in maintaining these traits in microbial model systems, by localizing the benefits and separating strains that invest in these products from 'cheater' strains that benefit without paying the cost. It is thus surprising that many unicellular, well-mixed microalgal populations invest in extracellular toxins that confer ecological benefits upon the entire population, for example, by eliminating nutrient competitors (allelopathy). Here we test the hypotheses that microalgal exotoxins are (1) exploitable public goods that benefit all cells, regardless of investment, or (2) nonexploitable private goods involved in cell-level functions. We test these hypotheses with high-toxicity (TOX+) and low-toxicity (TOX-) strains of the damaging, mixotrophic microalga Prymnesium parvum and two common competitors: green algae and diatoms. TOX+ actually benefits from dense populations of competing green algae, which can also be prey for P. parvum, yielding a relative fitness advantage over coexisting TOX-. However, with nonprey competitors (diatoms), TOX- increases in frequency over TOX+, despite benefiting from the exclusion of diatoms by TOX+. An evolutionary unstable, ecologically devastating public good may emerge from traits selected at lower levels expressed in novel environments.
    Evolution 06/2013; 67(6):1582-90. DOI:10.1111/evo.12030 · 4.66 Impact Factor