Article

Head Impact Exposure in Collegiate Football Players

Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island 02903, USA.
Journal of Biomechanics (Impact Factor: 2.5). 08/2011; 44(15):2673-8. DOI: 10.1016/j.jbiomech.2011.08.003
Source: PubMed

ABSTRACT In American football, impacts to the helmet and the resulting head accelerations are the primary cause of concussion injury and potentially chronic brain injury. The purpose of this study was to quantify exposures to impacts to the head (frequency, location and magnitude) for individual collegiate football players and to investigate differences in head impact exposure by player position. A total of 314 players were enrolled at three institutions and 286,636 head impacts were recorded over three seasons. The 95th percentile peak linear and rotational acceleration and HITsp (a composite severity measure) were 62.7g, 4378rad/s(2) and 32.6, respectively. These exposure measures as well as the frequency of impacts varied significantly by player position and by helmet impact location. Running backs (RB) and quarter backs (QB) received the greatest magnitude head impacts, while defensive line (DL), offensive line (OL) and line backers (LB) received the most frequent head impacts (more than twice as many than any other position). Impacts to the top of the helmet had the lowest peak rotational acceleration (2387rad/s(2)), but the greatest peak linear acceleration (72.4g), and were the least frequent of all locations (13.7%) among all positions. OL and QB had the highest (49.2%) and the lowest (23.7%) frequency, respectively, of front impacts. QB received the greatest magnitude (70.8g and 5428rad/s(2)) and the most frequent (44% and 38.9%) impacts to the back of the helmet. This study quantified head impact exposure in collegiate football, providing data that is critical to advancing the understanding of the biomechanics of concussive injuries and sub-concussive head impacts.

Download full-text

Full-text

Available from: Arthur Maerlender, Mar 03, 2014
1 Follower
 · 
162 Views
  • Source
    • "Recently, data based on direct measurements of head impact exposure in college football players demonstrated that running backs and quarterbacks suffer the hardest and most severe blows to the head, while linemen and linebackers suffer more head impacts during a game than players in other positions (Crisco et al. 2011). Nearly 300,000 head impacts at three institutions were recorded over three seasons. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic traumatic encephalopathy (CTE) is a form of neurodegeneration that results from repetitive brain trauma. Not surprisingly, CTE has been linked to participation in contact sports such as boxing, hockey and American football. In American football getting "dinged" equates to moments of dizziness, confusion, or grogginess that can follow a blow to the head. There are approximately 100,000 to 300,000 concussive episodes occurring in the game of American football alone each year. It is believed that repetitive brain trauma, with or possibly without symptomatic concussion, sets off a cascade of events that result in neurodegenerative changes highlighted by accumulations of hyperphosphorylated tau and neuronal TAR DNA-binding protein-43 (TDP-43). Symptoms of CTE may begin years or decades later and include a progressive decline of memory, as well as depression, poor impulse control, suicidal behavior, and, eventually, dementia similar to Alzheimer's disease. In some individuals, CTE is also associated with motor neuron disease similar to amyotrophic lateral sclerosis. Given the millions of athletes participating in contact sports that involve repetitive brain trauma, CTE represents an important public health issue. In this review, we discuss recent advances in understanding the etiology of CTE. It is now known that those instances of mild concussion or "dings" that we may have previously not noticed could very well be causing progressive neurodegenerative damage to a player's brain. In the future, focused and intensive study of the risk factors could potentially uncover methods to prevent and treat this disease.
    SpringerPlus 03/2012; 1:2. DOI:10.1186/2193-1801-1-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Head injuries and the prevention of both the short-term and long-term consequences have received heightened awareness in recent years. Education and legislative efforts have promoted both appropriate treatment of concussion and pushed the use of helmets for protection from head injuries. Current scientific data would suggest that helmets are effective at decreasing the risk of serious head injuries. However there is no evidence to suggest that helmets are protective against concussive injuries or the long-term impact of repetitive head trauma.
    Current Sports Medicine Reports 12(6):377-80. DOI:10.1249/JSR.0000000000000016 · 1.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decade, advances in technology have enabled researchers to evaluate concussion biomechanics through measurement of head impacts sustained during play using two primary methods: (1) laboratory reconstruction of open-field head contact, and (2) instrumented helmets. The purpose of this study was to correlate measures of head kinematics recorded by the Head Impact Telemetry (HIT) System (Simbex, NH) with those obtained from a Hybrid III (HIII) anthropometric headform under conditions that mimicked impacts occurring in the NFL. Linear regression analysis was performed to correlate peak linear acceleration, peak rotational acceleration, Gadd Severity Index (GSI), and Head Injury Criterion (HIC(15)) obtained from the instrumented helmet and HIII. The average absolute location error between instrumented helmet impact location and the direction of HIII head linear acceleration were also calculated. The HIT System overestimated Hybrid III peak linear acceleration by 0.9% and underestimated peak rotational acceleration by 6.1% for impact sites and velocities previously identified by the NFL as occurring during play. Acceleration measures for all impacts were correlated; however, linear was higher (r(2) = 0.903) than rotational (r(2) = 0.528) primarily due to lower HIT System rotational acceleration estimates at the frontal facemask test site. Severity measures GSI and HIC were also found to be correlated, albeit less than peak linear acceleration, with the overall difference between the two systems being less than 6.1% for either measure. Mean absolute impact location difference between systems was 31.2 ± 46.3° (approximately 0.038 ± 0.050 m), which was less than the diameter of the impactor surface in the test. In instances of severe helmet deflection (2.54-7.62 cm off the head), the instrumented helmet accurately measured impact location but overpredicted all severity metrics recorded by the HIII. Results from this study indicate that measurements from the two methods of study are correlated and provide a link that can be used to better interpret findings from future study using either technology.
    Annals of Biomedical Engineering 01/2012; 40(1):237-48. DOI:10.1007/s10439-011-0422-2 · 3.23 Impact Factor
Show more