Head Impact Exposure in Collegiate Football Players

Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island 02903, USA.
Journal of Biomechanics (Impact Factor: 2.75). 08/2011; 44(15):2673-8. DOI: 10.1016/j.jbiomech.2011.08.003
Source: PubMed


In American football, impacts to the helmet and the resulting head accelerations are the primary cause of concussion injury and potentially chronic brain injury. The purpose of this study was to quantify exposures to impacts to the head (frequency, location and magnitude) for individual collegiate football players and to investigate differences in head impact exposure by player position. A total of 314 players were enrolled at three institutions and 286,636 head impacts were recorded over three seasons. The 95th percentile peak linear and rotational acceleration and HITsp (a composite severity measure) were 62.7g, 4378rad/s(2) and 32.6, respectively. These exposure measures as well as the frequency of impacts varied significantly by player position and by helmet impact location. Running backs (RB) and quarter backs (QB) received the greatest magnitude head impacts, while defensive line (DL), offensive line (OL) and line backers (LB) received the most frequent head impacts (more than twice as many than any other position). Impacts to the top of the helmet had the lowest peak rotational acceleration (2387rad/s(2)), but the greatest peak linear acceleration (72.4g), and were the least frequent of all locations (13.7%) among all positions. OL and QB had the highest (49.2%) and the lowest (23.7%) frequency, respectively, of front impacts. QB received the greatest magnitude (70.8g and 5428rad/s(2)) and the most frequent (44% and 38.9%) impacts to the back of the helmet. This study quantified head impact exposure in collegiate football, providing data that is critical to advancing the understanding of the biomechanics of concussive injuries and sub-concussive head impacts.

Download full-text


Available from: Arthur Maerlender, Mar 03, 2014

Click to see the full-text of:

Article: Head Impact Exposure in Collegiate Football Players

360.4 KB

See full-text
  • Source
    • "In order to understand the biomechanics associated with concussion, numerous studies have been conducted over the last decade to investigate player exposure and tolerance to head impacts in football.3,4,7,9,10,13,16,17,22,23,25–27,31–34 Many of these studies have utilized commercially available helmet-mounted accelerometer arrays (Head Impact Telemetry (HIT) System, Simbex, Lebanon, NH) to measure head kinematics resulting from head impact in real-time during live play. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Head impact exposure in youth football has not been well-documented, despite children under the age of 14 accounting for 70% of all football players in the United States. The objective of this study was to quantify the head impact exposure of youth football players, age 9-12, for all practices and games over the course of single season. A total of 50 players (age = 11.0 ± 1.1 years) on three teams were equipped with helmet mounted accelerometer arrays, which monitored each impact players sustained during practices and games. During the season, 11,978 impacts were recorded for this age group. Players averaged 240 ± 147 impacts for the season with linear and rotational 95th percentile magnitudes of 43 ± 7 g and 2034 ± 361 rad/s(2). Overall, practice and game sessions involved similar impact frequencies and magnitudes. One of the three teams however, had substantially fewer impacts per practice and lower 95th percentile magnitudes in practices due to a concerted effort to limit contact in practices. The same team also participated in fewer practices, further reducing the number of impacts each player experienced in practice. Head impact exposures in games showed no statistical difference. While the acceleration magnitudes among 9-12 year old players tended to be lower than those reported for older players, some recorded high magnitude impacts were similar to those seen at the high school and college level. Head impact exposure in youth football may be appreciably reduced by limiting contact in practices. Further research is required to assess whether such a reduction in head impact exposure will result in a reduction in concussion incidence.
    Annals of Biomedical Engineering 07/2013; 41(12). DOI:10.1007/s10439-013-0867-6 · 3.20 Impact Factor
  • Source
    • "A recent study by Crisco et al. examined head impact exposure in collegiate football players and found that the average number of impacts received by an individual player during a single season was 420 with a maximum of  2,492 [9]. These impacts vary in severity based on their position. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that is a long-term consequence of single or repetitive closed head injuries for which there is no treatment and no definitive pre-mortem diagnosis. It has been closely tied to athletes who participate in contact sports like boxing, American football, soccer, professional wrestling and hockey. Risk factors include head trauma, presence of ApoE3 or ApoE4 allele, military service, and old age. It is histologically identified by the presence of tau-immunoreactive NFTs and NTs with some cases having a TDP-43 proteinopathy or beta-amyloid plaques. It has an insidious clinical presentation that begins with cognitive and emotional disturbances and can progress to Parkinsonian symptoms. The exact mechanism for CTE has not been precisely defined however, research suggest it is due to an ongoing metabolic and immunologic cascade called immunoexcitiotoxicity. Prevention and education are currently the most compelling way to combat CTE and will be an emphasis of both physicians and athletes. Further research is needed to aid in pre-mortem diagnosis, therapies, and support for individuals and their families living with CTE.
    04/2012; 2012(2):816069. DOI:10.1155/2012/816069
  • Source
    • "Recently, data based on direct measurements of head impact exposure in college football players demonstrated that running backs and quarterbacks suffer the hardest and most severe blows to the head, while linemen and linebackers suffer more head impacts during a game than players in other positions (Crisco et al. 2011). Nearly 300,000 head impacts at three institutions were recorded over three seasons. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic traumatic encephalopathy (CTE) is a form of neurodegeneration that results from repetitive brain trauma. Not surprisingly, CTE has been linked to participation in contact sports such as boxing, hockey and American football. In American football getting "dinged" equates to moments of dizziness, confusion, or grogginess that can follow a blow to the head. There are approximately 100,000 to 300,000 concussive episodes occurring in the game of American football alone each year. It is believed that repetitive brain trauma, with or possibly without symptomatic concussion, sets off a cascade of events that result in neurodegenerative changes highlighted by accumulations of hyperphosphorylated tau and neuronal TAR DNA-binding protein-43 (TDP-43). Symptoms of CTE may begin years or decades later and include a progressive decline of memory, as well as depression, poor impulse control, suicidal behavior, and, eventually, dementia similar to Alzheimer's disease. In some individuals, CTE is also associated with motor neuron disease similar to amyotrophic lateral sclerosis. Given the millions of athletes participating in contact sports that involve repetitive brain trauma, CTE represents an important public health issue. In this review, we discuss recent advances in understanding the etiology of CTE. It is now known that those instances of mild concussion or "dings" that we may have previously not noticed could very well be causing progressive neurodegenerative damage to a player's brain. In the future, focused and intensive study of the risk factors could potentially uncover methods to prevent and treat this disease.
    SpringerPlus 03/2012; 1(1):2. DOI:10.1186/2193-1801-1-2
Show more