Development and validation of highly sensitive method for determination of misoprostol free acid in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry: application to a clinical pharmacokinetic study.

Bioanalytical Department, Integrated Product Development, Dr. Reddy's Laboratories Ltd, Bachupalli, Hyderabad 500 072, India.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (Impact Factor: 2.78). 09/2011; 879(26):2827-33. DOI: 10.1016/j.jchromb.2011.08.006
Source: PubMed

ABSTRACT A highly sensitive, selective and evaporation free SPE extraction, ESI-LC-MS/MS method has been developed for estimation of misoprostol free acid in human plasma using misoprostol acid-d(5) as an internal standard (IS). The analyte was separated using isocratic mobile phase on reverse phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M-H] anions, m/z 367-249 for misoprostol acid and m/z 372-249 for the IS. The total run time was 5.0 min and the elution of misoprostol acid and misoprostol acid-d(5) (IS) occurred at 3.6 min. The developed method was validated in human plasma with a lower limit of quantification of 2.5 pg/mL. A linear response function was established for the range of concentrations 2.5-1200 pg/mL (r>0.998) for misoprostol acid in human plasma. The intra and inter-day precision values for misoprostol acid met the acceptance as per FDA guidelines. Misoprostol acid was stable in the battery of stability studies viz., bench-top, auto-sampler and freeze/thaw cycles. The developed assay method was applied to an oral pharmacokinetic study in humans.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enzyme- and free radical-catalyzed oxidation of polyunsaturated fatty acids (PUFAs) produces the eicosanoids, docosanoids and octadecanoids. This large family of potent bioactive lipids is involved in many biochemical and signaling pathways which are implicated in physiological and pathophysiological processes and can be viable therapeutic targets. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) offers selectivity, sensitivity, robustness and high resolution and is able to analyze a large number of eicosanoids in biological samples in a short time. The present article reviews and discusses reported LC-MS/MS methods and the results obtained from their application in cell models. Reliable analytical outcomes are critically important for understanding physiological and pathophysiological cellular processes, such as inflammation, diseases with inflammatory components (e.g., cardiovascular disease, diabetes, metabolic syndrome), as well as cancer. Reported findings obtained by using the LC-MS/MS methodology in cell systems may have important predictive as well as nutritional and pharmacological implications. We conclude that the LC-MS/MS methodology is a versatile and reliable analytical tool for the simultaneous analysis of multiple PUFA-derived metabolites including the eicosanoids in cell culture samples at concentrations on the pM/nM threshold, i.e. at baseline and after stimulation.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 05/2014; · 2.78 Impact Factor