Article

The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials

Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
Biomaterials (Impact Factor: 8.31). 08/2011; 32(34):8979-89. DOI: 10.1016/j.biomaterials.2011.08.037
Source: PubMed

ABSTRACT The interactions of C2C12 myoblasts and human bone marrow stem cells (hMSCs) with silk-tropoelastin biomaterials, and the capacity of each to promote attachment, proliferation, and either myogenic- or osteogenic-differentiation were investigated. Temperature-controlled water vapor annealing was used to control beta-sheet crystal formation to generate insoluble silk-tropoelastin biomaterial matrices at defined ratios of the two proteins. These ratios controlled surface roughness and micro/nano-scale topological patterns, and elastic modulus, stiffness, yield stress, and tensile strength. A combination of low surface roughness and high stiffness in the silk-tropoelastin materials promoted proliferation and myogenic-differentiation of C2C12 cells. In contrast, high surface roughness with micro/nano-scale surface patterns was favored by hMSCs. Increasing the content of human tropoelastin in the silk-tropoelastin materials enhanced the proliferation and osteogenic-differentiation of hMSCs. We conclude that the silk-tropoelastin composition facilitates fine tuning of the growth and differentiation of these cells.

Full-text

Available from: Anthony S Weiss, Apr 20, 2015
0 Followers
 · 
158 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral nerve regeneration may be enhanced through the use of biodegradable thin film biomaterials as highly tuned inner nerve conduit liners. Dorsal root ganglion neuron and Schwann cell responses were studied on protein films comprised of silk fibroin blended with recombinant human tropoelastin protein. Tropoelastin significantly improved neurite extension and enhanced Schwann cell process length and cell area, while the silk provided a robust biomaterial template. Silk-tropoelastin blends afforded a 2.4 fold increase in neurite extension, when compared to silk films coated with poly-d-lysine. When patterned by drying on grooved polydimethylsiloxane (3.5 μm groove width, 0.5 μm groove depth), these protein blends induced both neurite and Schwann cell process alignment. Neurons were functional as assessed using patch-clamping, and displayed action potentials similar to those cultured on poly(lysine)-coated glass. Taken together, silk-tropoelastin films offer useful biomaterial interfacial platforms for nerve cell control which can be considered for neurite guidance, disease models for neuropathies, and surgical peripheral nerve repairs. Copyright © 2014. Published by Elsevier Ltd.
    Acta Biomaterialia 12/2014; 14. DOI:10.1016/j.actbio.2014.11.045 · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silkworm cocoons are biological composite structures protecting the silkworms against environmental damage and physical attack by natural predators. In particular, some outdoor reared silk cocoons exhibit outstanding mechanical properties that are relevant to the higher level protection required to enhance the survival chance of silkworms while supporting their metabolic activity. The performance of composite materials strongly depends on the adhesion between the fibre reinforcement and matrix, with the surface properties of the fibres playing a key role in determining the level of adhesion achieved. For this reason it is important to study the surface properties of silk fibroin to further understand the composite properties of the cocoons. In this work, both the mechanical properties of the silk cocoons and silk fibroin were studied. The surface topography was examined using scanning probe microscopy (SPM), which revealed distinct longitudinal ridges and striations along the fibre axis of the four silk fibre types. The fibres were found to exhibit heterogeneity in surface energy as evidenced from inverse gas chromatography (IGC) measurements. The combination of excellent mechanical properties and the more energetically heterogeneous surface nature of the wild A. pernyi silk fibroin fibres correlates well with the excellent mechanical properties of the A. pernyi cocoons.
    RSC Advances 11/2014; 5(2). DOI:10.1039/C4RA09482D · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For centuries, Bombyx mori silkworm silk fibroin has been used as a high-end textile fiber. Beyond textiles, silk fibroin has also been used as a surgical suture material for decades, and is being further developed for various emerging biomedical applications. The facile and versatile processability of silk fibroin in native and regenerated forms makes it appealing in a range of applications that require a mechanically superior, biocompatible, biodegradable, and functionalizable material. In this review, we describe the current understandings of the constituents, structures, and mechanical properties of silk fibroin. Following that, we summarize the strategies to bring its mechanical performance closer to that of spider dragline silk. Next, we discuss how functionalization endows silk fibroin with desired functionalities and also the effects of functionalization on its mechanical properties. Finally, from the mechanical point of view, we discuss various matrices/morphologies of silk fibroin, and their respective applications in term of functionalities, mechanical properties and performance.
    Progress in Polymer Science 02/2015; DOI:10.1016/j.progpolymsci.2015.02.001 · 26.85 Impact Factor