Article

Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis.

Department of Medicine, University of Western Ontario, London, Ontario, Canada.
American Journal Of Pathology (Impact Factor: 4.6). 08/2011; 179(4):1733-45. DOI: 10.1016/j.ajpath.2011.06.041
Source: PubMed

ABSTRACT Idiopathic pulmonary fibrosis (IPF) may be triggered by epithelial injury that results in aberrant production of growth factors, cytokines, and proteinases, leading to proliferation of myofibroblasts, excess deposition of collagen, and destruction of the lung architecture. The precise mechanisms and key signaling mediators responsible for this aberrant repair process remain unclear. We assessed the importance of matrix metalloproteinase-3 (MMP-3) in the pathogenesis of IPF through i) determination of MMP-3 expression in patients with IPF, ii) in vivo experiments examining the relevance of MMP-3 in experimental models of fibrosis, and iii) in vitro experiments to elucidate possible mechanisms of action. Gene expression analysis, quantitative RT-PCR, and Western blot analysis of explanted human lungs revealed enhanced expression of MMP-3 in IPF, compared with control. Transient adenoviral vector-mediated expression of recombinant MMP-3 in rat lung resulted in accumulation of myofibroblasts and pulmonary fibrosis. Conversely, MMP-3-null mice were protected against bleomycin-induced pulmonary fibrosis. In vitro treatment of cultured lung epithelial cells with purified MMP-3 resulted in activation of the β-catenin signaling pathway, via cleavage of E-cadherin, and induction of epithelial-mesenchymal transition. These processes were inhibited in bleomycin-treated MMP-3-null mice, as assessed by cytosolic translocation of β-catenin and cyclin D1 expression. These observations support a novel role for MMP-3 in the pathogenesis of IPF, through activation of β-catenin signaling and induction of epithelial-mesenchymal transition.

0 Followers
 · 
171 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Purpose: Pulmonary fibrosis (PF) is an insidiously progressive scarring disorder of the alveoli and is associated with high mortality. Currently, therapies available are associated with restricted efficacy and side effects. This study aimed to investigate the effect of chitosan aerosol inhalation on lipopolysaccharide (LPS)-induced pulmonary remodeling and fibrosis in rats. Methods: A rat model of PF was established by intratracheal injection of LPS (5 mg/kg). Chitosan was nebulized to rats from day 4 to 28 after LPS injection. We analyzed the effect of chitosan on LPS-induced pulmonary remodeling and fibrosis by hematoxylin-eosin staining (HE), Masson staining, and the determination of the hydroxyproline content. The expression intensities of matrix metalloproteinase-3 (MMP-3) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were analyzed by western blots. Results: Histological assessments showed that chitosan aerosol inhalation attenuated the fibrotic changes in LPS-induced PF in rats. Compared with the LPS group, the fibrosis parameters were significantly improved in the LPS + chitosan group (LCh group), although not as good as those of the control group. The expressions of MMP-3 and TIMP-1 in the LCh group were markedly less than that of the LPS group on the 28th day. Conclusions: Our findings show that chitosan aerosol inhalation inhibits the expression of MMP-3 and TIMP-1, and ameliorates LPS-induced pulmonary remodeling and fibrosis in rats.
    Experimental Lung Research 11/2014; 40(9):467-473. DOI:10.3109/01902148.2014.948231 · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell-cell interactions is a key step in the earliest stages of cancer development.
    Cancer informatics 01/2015; 14(Suppl 3):1. DOI:10.4137/CIN.S18965
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the mtDNA genome have long been suspected to play an important role in cancer. Although most cancer cells harbor mtDNA mutations, the question of whether such mutations are associated with clinical prognosis of lung cancer remains unclear. We resequenced the entire mitochondrial genomes of tumor tissue from a population of 250 Korean patients with non-small cell lung cancer (NSCLC). Our analysis revealed that the haplogroup (D/D4) was associated with worse overall survival (OS) of early-stage NSCLC [adjusted hazard ratio (AHR), 1.95; 95% CI, 1.14-3.33; P trend = 0.03]. By comparing the mtDNA variations between NSCLC tissues and matched blood samples, we found that haplogroups M/N and/or D/D4 were hotspots for somatic mutations, suggesting a more complicated mechanism of mtDNA somatic mutations other than the commonly accepted mechanism of sequential accumulation of mtDNA mutations.
    Cancer informatics 01/2015; 14(Suppl 1):1-9. DOI:10.4137/CIN.S13976

Full-text (2 Sources)

Download
10 Downloads
Available from
Nov 26, 2014