Article

Tissue inhibitor of metalloproteinases-3 mediates the death of immature oligodendrocytes via TNF-α/TACE in focal cerebral ischemia in mice.

Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
Journal of Neuroinflammation (Impact Factor: 4.9). 08/2011; 8:108. DOI: 10.1186/1742-2094-8-108
Source: PubMed

ABSTRACT Oligodendrocyte (OL) death is important in focal cerebral ischemia. TIMP-3 promotes apoptosis in ischemic neurons by inhibiting proteolysis of TNF-α superfamily of death receptors. Since OLs undergo apoptosis during ischemia, we hypothesized that TIMP-3 contributes to OL death.
Middle cerebral artery occlusion (MCAO) was induced in Timp-3 knockout (KO) and wild type (WT) mice with 24 or 72 h of reperfusion. Cell death in white matter was investigated by stereology and TUNEL. Mature or immature OLs were identified using antibodies against glutathione S-transferase-π (GST-π) and galactocerebroside (GalC), respectively. Expression and level of proteins were examined using immunohistochemistry and immunoblotting. Protein activities were determined using a FRET peptide.
Loss of OL-like cells was detected at 72 h only in WT ischemic white matter where TUNEL showed greater cell death. TIMP-3 expression was increased in WT reactive astrocytes. GST-π was reduced in ischemic white matter of WT mice compared with WT shams with no difference between KO and WT at 72 h. GalC level was significantly increased in both KO and WT ischemic white matter at 72 h. However, the increase in GalC in KO mice was significantly higher than WT; most TUNEL-positive cells in ischemic white matter expressed GalC, suggesting TIMP-3 deficiency protects the immature OLs from apoptosis. There were significantly higher levels of cleaved caspase-3 at 72 h in WT white matter than in KO. Greater expression of MMP-3 and -9 was seen in reactive astrocytes and/or microglia/macrophages in WT at 72 h. We found more microglia/macrophages in WT than in KO, which were the predominant source of increased TNF-α detected in the ischemic white matter. TACE activity was significantly increased in ischemic WT white matter, which was expressed in active microglia/macrophages and OLs.
Our results suggested that focal ischemia leads to proliferation of immature OLs in white matter and that TIMP-3 contributes to a caspase-3-dependent immature OL death via TNF-α-mediated neuroinflammation. Future studies will be needed to delineate the role of MMP-3 and MMP-9 that were increased in the Timp-3 wild type.

0 Bookmarks
 · 
205 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A disintegrin and metalloprotease 17 (ADAM17) is a sheddase with important substrates including tumor necrosis factor-α (TNF-α) and its receptors, the p75 neurotrophin receptor (p75NTR), and members of the epidermal growth factor family. The rationale of this study was to inhibit ADAM17-induced shedding of soluble TNF-α in order to reduce detrimental inflammation after spinal cord injury (SCI). However, using the specific ADAM17 blocker BMS-561392 in neuronal and glial cell cultures, we show that proper functioning of ADAM17 is vital for oligodendrocyte and microglia survival in a p44 MAPK-dependent manner. In contrast, genetic ablation of ADAM17 specifically increases microglial death. Surprisingly, although blocking ADAM17 in vivo does not substantially change the ratio between membrane-bound and soluble TNF-α, it increases expression of the pro-apoptotic marker Bax and microglial apoptosis while impairing functional recovery after SCI. These data suggest that ADAM17 is a key survival factor for microglial cells after SCI.
    Cell Death & Disease 12/2013; 4:e954. DOI:10.1038/cddis.2013.466 · 5.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain pericytes are involved in neurovascular dysfunction, neurodegeneration and/or neuroinflammation. In the present study, we focused on the proinflammatory properties of brain pericytes to understand their participation in the induction of inflammation at the neurovascular unit (NVU). The NVU comprises different cell types, namely, brain microvascular endothelial cells, pericytes, astrocytes and microglia. Among these, we found pericytes to be the most sensitive to tumor necrosis factor (TNF)-α, possessing a unique cytokine and chemokine release profile. This was characterized by marked release of interleukin (IL)-6 and macrophage inflammatory protein-1α. Furthermore, TNF-α-stimulated pericytes induced expression of inducible nitric oxide synthase and IL-1β mRNAs, as an index of BV-2 microglial cell activation state, to the highest levels. Based on these findings, the possibility that brain pericytes act specifically as TNF-α-sensitive cells and as effectors of TNF-α through the release of proinflammatory factors, and that, as such, they have a role in inducing brain inflammation, should be considered.
    Neuroscience Letters 06/2014; 578. DOI:10.1016/j.neulet.2014.06.052 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brain is very actively involved in immune-inflammatory processes, and the response to several trigger factors such as trauma, hemorrhage, or ischemia causes the release of active inflammatory substances such as cytokines, which are the basis of second-level damage. During brain ischemia and after brain trauma, the intrinsic inflammatory mechanisms of the brain, as well as those of the blood, are mediated by leukocytes that communicate with each other through cytokines. A neuroinflammatory cascade has been reported to be activated after a traumatic brain injury (TBI) and this cascade is due to the release of pro- and anti-inflammatory cytokines and chemokines. Microglia are the first sources of this inflammatory cascade in the brain setting. Also in an ischemic stroke setting, an important mediator of this inflammatory reaction is tumor necrosis factor (TNF)-α, which seems to be involved in every phase of stroke-related neuronal damage such as inflammatory and prothrombotic events. TNF-α has been shown to have an important role within the central nervous system; its properties include activation of microglia and astrocytes, influence on blood-brain barrier permeability, and influences on glutamatergic transmission and synaptic plasticity. TNF-α increases the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor density on the cell surface and simultaneously decreases expression of γ-aminobutyric acid receptor cells, and these effects are related to a direct neurotoxic effect. Several endogenous mechanisms regulate TNF-α activity during inflammatory responses. Endogenous inhibitors of TNF include prostaglandins, cyclic adenosine monophosphate, and glucocorticoids. Etanercept, a biologic TNF antagonist, has a reported effect of decreasing microglia activation in experimental models, and it has been used therapeutically in animal models of ischemic and traumatic neuronal damage. In some studies using animal models, researchers have reported a limitation of TBI-induced cerebral ischemia due to etanercept action, amelioration of brain contusion signs, as well as motor and cognitive dysfunction. On this basis, it appears that etanercept may improve outcomes of TBI by penetrating into the cerebrospinal fluid in rats, although further studies in humans are needed to confirm these interesting and suggestive experimental findings.
    Drug Design, Development and Therapy 01/2014; 8:2221-2239. DOI:10.2147/DDDT.S67655 · 3.03 Impact Factor

Full-text (3 Sources)

Download
33 Downloads
Available from
May 31, 2014