Tissue inhibitor of metalloproteinases-3 mediates the death of immature oligodendrocytes via TNF-α/TACE in focal cerebral ischemia in mice

Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
Journal of Neuroinflammation (Impact Factor: 5.41). 08/2011; 8(1):108. DOI: 10.1186/1742-2094-8-108
Source: PubMed


Oligodendrocyte (OL) death is important in focal cerebral ischemia. TIMP-3 promotes apoptosis in ischemic neurons by inhibiting proteolysis of TNF-α superfamily of death receptors. Since OLs undergo apoptosis during ischemia, we hypothesized that TIMP-3 contributes to OL death.
Middle cerebral artery occlusion (MCAO) was induced in Timp-3 knockout (KO) and wild type (WT) mice with 24 or 72 h of reperfusion. Cell death in white matter was investigated by stereology and TUNEL. Mature or immature OLs were identified using antibodies against glutathione S-transferase-π (GST-π) and galactocerebroside (GalC), respectively. Expression and level of proteins were examined using immunohistochemistry and immunoblotting. Protein activities were determined using a FRET peptide.
Loss of OL-like cells was detected at 72 h only in WT ischemic white matter where TUNEL showed greater cell death. TIMP-3 expression was increased in WT reactive astrocytes. GST-π was reduced in ischemic white matter of WT mice compared with WT shams with no difference between KO and WT at 72 h. GalC level was significantly increased in both KO and WT ischemic white matter at 72 h. However, the increase in GalC in KO mice was significantly higher than WT; most TUNEL-positive cells in ischemic white matter expressed GalC, suggesting TIMP-3 deficiency protects the immature OLs from apoptosis. There were significantly higher levels of cleaved caspase-3 at 72 h in WT white matter than in KO. Greater expression of MMP-3 and -9 was seen in reactive astrocytes and/or microglia/macrophages in WT at 72 h. We found more microglia/macrophages in WT than in KO, which were the predominant source of increased TNF-α detected in the ischemic white matter. TACE activity was significantly increased in ischemic WT white matter, which was expressed in active microglia/macrophages and OLs.
Our results suggested that focal ischemia leads to proliferation of immature OLs in white matter and that TIMP-3 contributes to a caspase-3-dependent immature OL death via TNF-α-mediated neuroinflammation. Future studies will be needed to delineate the role of MMP-3 and MMP-9 that were increased in the Timp-3 wild type.

33 Reads
  • Source
    • "In vitro and in vivo experiments have shown that oligodendrocytes are highly vulnerable to hypoxic and ischemic insults (Domercq et al., 2010; Goldenberg-Cohen et al., 2005; Yang et al., 2011). In this study, we investigated whether adenosine was protective or deleterious to oligodendrocytes . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Adenosine receptor activation is involved in myelination and in apoptotic pathways linked to neurodegenerative diseases. In this study, we investigated the effects of adenosine receptor activation in the viability of oligodendrocytes of the rat optic nerve. Selective activation of A3 receptors in pure cultures of oligodendrocytes caused concentration-dependent apoptotic and necrotic death which was preceded by oxidative stress and mitochondrial membrane depolarization. Oligodendrocyte apoptosis induced by A3 receptor activation was caspase-dependent and caspase-independent. In addition to dissociated cultures, incubation of optic nerves ex vivo with adenosine and the A3 receptor agonist 2-CI-IB-MECA(1-[2-Chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide)-induced caspase-3 activation, oligodendrocyte damage, and myelin loss, effects which were prevented by the presence of caffeine and the A3 receptor antagonist MRS 1220 (N-[9-Chloro-2-(2-furanyl)[1,2,4]-triazolo [1,5-c]quinazolin-5-yl]benzene acetamide). Finally, ischemia-induced injury and functional loss to the optic nerve was attenuated by blocking A3 receptors. Together, these results indicate that adenosine may trigger oligodendrocyte death via activation of A3 receptors and suggest that this mechanism contributes to optic nerve and white matter ischemic damage. GLIA 2013.
    Glia 02/2014; 62(2). DOI:10.1002/glia.22599 · 6.03 Impact Factor
  • Source
    • "While both phosphorylated tau and Hsp27 are associated directly with RGC neurodegeneration, we also found that Ro3206145 was effective at reducing at least some downstream inflammatory targets. Treatment reduced in the retina the expression of mRNA encoding ceruloplasmin and TIMP3 (Fig. 9A), both important components of TNFα inflammatory signaling and downstream targets of p38 MAPK (Lee et al., 2007; Stasi et al., 2007; Xu et al., 2012; Yang et al., 2011). TNFα is a potent inflammatory cytokine implicated in glaucomatous neurodegeneration in both the retina and optic nerve (Almasieh et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The p38 mitogen-activated protein kinase (MAPK) isoforms are phosphorylated by a variety of stress stimuli in neurodegenerative disease and act as upstream activators of myriad pathogenic processes. Thus, p38 MAPK inhibitors are of growing interest as possible therapeutic interventions. Axonal dysfunction is an early component of most neurodegenerative disorders, including the most prevalent optic neuropathy, glaucoma. Sensitivity to intraocular pressure at an early stage disrupts anterograde transport along retinal ganglion cell (RGC) axons to projection targets in the brain with subsequent degeneration of the axons themselves; RGC body loss is much later. Here we show that elevated ocular pressure in rats increases p38 MAPK activation in retina, especially in RGC bodies. Topical eye-drop application of a potent and selective inhibitor of the p38 MAPK catalytic domain (Ro3206145) prevented both the degradation of anterograde transport to the brain and degeneration of axons in the optic nerve. Ro3206145 reduced in the retina phosphorylation of tau and heat-shock protein 27, both down-stream targets of p38 MAPK activation implicated in glaucoma, as well as well as expression of two inflammatory responses. We also observed increased p38 MAPK activation in mouse models. Thus, inhibition of p38 MAPK signaling in the retina may represent a therapeutic target for preventing early pathogenesis in optic neuropathies.
    Neurobiology of Disease 07/2013; 59. DOI:10.1016/j.nbd.2013.07.001 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small vessel disease is the major cause of white matter injury in patients with vascular cognitive impairment. Matrix metalloproteinase (MMP)-mediated inflammation may be involved in the white matter damage with oligodendrocyte (Ol) death. Therefore, we used spontaneously hypertensive stroke-prone rats to study the role of neuroinflammation in white matter damage. Permanent unilateral carotid artery occlusion was performed at 12 weeks of age in spontaneously hypertensive stroke-prone rats. Following surgery, rats were placed on a Japanese permissive diet and received 1% NaCl in drinking water. MRI, histology, biochemistry, and ELISA characterized white matter lesions, and cognitive impairment was tested by Morris water maze. White matter damage was observed 4 to 5 weeks following permanent unilateral carotid artery occlusion/Japanese permissive diet. Immunoblotting showed marked reduction in myelin basic protein and upregulation of immature Ols. Mature Ols underwent caspase-3-mediated apoptosis. Morris water maze showed cognitive impairment. Abnormally appearing vessels were observed and surrounded by inflammatory-like cells. IgG extravasation and hemorrhage, indicating blood-brain barrier (BBB) disruption, was closely associated with MMP-9 expression. Lesions in white matter showed reactive astrocytosis and activated microglia that expressed tumor necrosis factor-α. MMP-3 and MMP-9 were significantly increased, and MMP-2 was reduced in both astrocytes and Ol. We found apoptosis of mature Ols with an increase in immature Ols. Increased MMP-3, MMP-9, and tumor necrosis factor-α were associated with myelin breakdown and BBB disruption. Neuroinflammation is an important factor in white matter damage and Ol death, and studies using this new model can be performed to assess agents to block inflammation.
    Stroke 02/2012; 43(4):1115-22. DOI:10.1161/STROKEAHA.111.643080 · 5.72 Impact Factor
Show more