Article

Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells.

Molecular Biology Institute, David Geff en School of Medicine, University of California, Los Angeles, CA 90095-1782, USA.
Leukemia & lymphoma (Impact Factor: 2.61). 08/2011; 52(11):2169-78. DOI: 10.3109/10428194.2011.596964
Source: PubMed

ABSTRACT A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies.

0 Followers
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transferrin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent manner. ch128.1Av is also a delivery system and its conjugation with biotinylated saporin (b-SO6), a plant ribosome-inactivating toxin, results in a dramatic iron-independent cytotoxicity, both in malignant cells that are sensitive or resistant to ch128.1Av alone, in which the toxin effectively inhibits protein synthesis and triggers caspase activation. We have now found that the ch128.1Av/b-SO6 complex induces a transcriptional response consistent with oxidative stress and DNA damage, a response that is not observed with ch128.1Av alone. Furthermore, we show that the antioxidant N-acetylcysteine partially blocks saporin-induced apoptosis suggesting that oxidative stress contributes to DNA damage and ultimately saporin-induced cell death. Interestingly, the toxin was detected in nuclear extracts by immunoblotting, suggesting the possibility that saporin might induce direct DNA damage. However, confocal microscopy did not show a clear and consistent pattern of intranuclear localization. Finally, using the long-term culture-initiating cell assay we found that ch128.1Av/b-SO6 is not toxic to normal human hematopoietic stem cells suggesting that this critical cell population would be preserved in therapeutic interventions using this immunotoxin.
    Toxicology in Vitro 10/2012; 27(1). DOI:10.1016/j.tiv.2012.10.006 · 3.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human cancers. Actually, ATC is refractory to conventional therapies, including surgery, chemotherapy, radiotherapy, and radioiodine ((131)I) therapy. Accordingly, genetic and molecular characterizations of ATC have been frequently and periodically reviewed in order to identify potential biological markers exploitable for target therapy. This review briefly focuses on main molecular events that characterize ATC and provides an update about preclinical studies. In addition, the overexpression of transferrin receptor 1 (TfR1/CD71) by neoplastic cells of ATC is emphasized in that it could represent a potential therapeutic target. In this regard, new therapeutic approaches based on the use of monoclonal or recombinant antibodies, or transferrin-gallium-TfR1/CD71 molecular complexes, or lastly small interfering RNAs (siRNAs) are proposed.
    International Journal of Endocrinology 07/2014; 2014:685396. DOI:10.1155/2014/685396 · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously developed an antibody-avidin fusion protein (ch128.1Av) specific for the human transferrin receptor 1 (TfR1; CD71) to be used as a delivery vector for cancer therapy and showed that ch128.1Av delivers the biotinylated plant toxin saporin-6 into malignant B cells. However, due to widespread expression of TfR1, delivery of the toxin to normal cells is a concern. Therefore, we explored the potential of dual targeted lentiviral-mediated gene therapy approaches to restrict gene expression to malignant B cells. Targeting occurs through the use of ch128.1Av or its parental antibody without avidin (ch128.1) and through transcriptional regulation using an immunoglobulin promoter. Flow cytometry was used to detect the expression of enhanced green fluorescent protein (EGFP) in a panel of cell lines. Cell viability after specific delivery of the therapeutic gene FCU1, a chimeric enzyme consisting of cytosine deaminase genetically fused to uracil phosphoribosyltransferse that converts the 5-fluorocytosine (5-FC) prodrug into toxic metabolites, was monitored by an MTS assay. We found that EGFP was specifically expressed in a panel of human malignant B cells, but not in human T cell lines. EGFP expression was observed in all cell lines when a ubiquitous promoter was used. Furthermore, we show the decrease of cell viability in malignant plasma cells in the presence of 5-FC. These studies demonstrate that gene expression can be restricted to malignant B cells and suggest that this dual targeted gene therapy strategy may help to circumvent the potential side effects of certain TfR1-targeted protein delivery approaches. This article is protected by copyright. All rights reserved.
    The Journal of Gene Medicine 01/2014; 16(1-2). DOI:10.1002/jgm.2754 · 1.95 Impact Factor