Article

Relationship between the Bertin index to estimate visceral adipose tissue from dual-energy X-ray absorptiometry and cardiometabolic risk factors before and after weight loss.

Department of Kinanthropology, Université du Québec à Montréal, Montreal, Quebec, Canada.
Obesity (Impact Factor: 3.92). 08/2011; 20(4):886-90. DOI: 10.1038/oby.2011.273
Source: PubMed

ABSTRACT The purpose of this study was to investigate the relationship between visceral adipose tissue (VAT), estimated with the Bertin index obtained from dual-energy X-ray absorptiometry (DXA), with cardiometabolic risk factors before and after a weight loss program and compare it with VAT measured with computed tomography (CT) scan. The study population for this analysis included 92 nondiabetic overweight and obese sedentary postmenopausal women (age: 58.1 ± 4.7 years, BMI: 31.8 ± 4.2 kg/m(2)) participating in a weight loss intervention that consisted of a caloric restricted diet with and without resistance training (RT). We measured (i) VAT using CT scan, (ii) body composition (using DXA) from which the Bertin index was calculated, (iii) cardiometabolic risk factors such as insulin sensitivity (using the hyperinsulinenic-euglycemic clamp technique), peak oxygen consumption, blood pressure, plasma lipids, C-reactive protein as well as fasting glucose and insulin. VAT levels for both methods significantly decreased after the weight loss intervention. Furthermore, no differences in VAT levels between both methods were observed before (88.0 ± 25.5 vs. 83.8 ± 22.0 cm(2)) and after (76.8 ± 27.8 vs. 73.6 ± 23.2 cm(2)) the weight loss intervention. In addition, the percent change in VAT levels after the weight loss intervention was similar between both methods (-13.0 ± 16.5 vs. -12.5 ± 12.6%). Moreover, similar relationships were observed between both measures of VAT with cardiometabolic risk factors before and after the weight loss intervention. Finally, results from the logistic regression analysis consistently showed that fat mass and lean body mass were independent predictors of pre- and post-VAT levels for both methods in our cohort. In conclusion, estimated visceral fat levels using the Bertin index may be able to trace variations of VAT after weight loss. This index also shows comparable relationships with cardiometabolic risk factors when compared to VAT measured using CT scan.

0 Bookmarks
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Excess accumulation of visceral fat is a prominent risk factor for cardiovascular and metabolic morbidity. While computed tomography (CT) is the gold standard to measure visceral adiposity, this is often not possible for large studies - thus valid, but less expensive and intrusive proxy measures of visceral fat are required such as dual-energy X-ray absorptiometry (DXA). Study aims were to a) identify a valid DXA-based measure of visceral adipose tissue (VAT), b) estimate VAT heritability and c) assess visceral fat association with morbidity in relation to body fat distribution. METHODS: A validation sample of 54 females measured for detailed body fat composition - assessed using CT, DXA and anthropometry -- was used to evaluate previously published predictive models of CT-measured visceral fat. Based upon a validated model, we realised an out-of-sample estimate of abdominal VAT area for a study sample of 3457 female volunteer twins and estimated VAT area heritability using a classical twin study design. Regression and residuals analyses were used to assess the relationship between adiposity and morbidity. RESULTS: Published models applied to the validation sample explained >80% of the variance in CT-measured visceral fat. While CT visceral fat was best estimated using a linear regression for waist circumference, CT body cavity area and total abdominal fat (R2 = 0.91), anthropometric measures alone predicted VAT almost equally well (CT body cavity area and waist circumference, R2 = 0.86). Narrow sense VAT area heritability for the study sample was estimated to be 58% (95% CI: 51-66%) with a shared familial component of 24% (17-30%). VAT area is strongly associated with type 2 diabetes (T2D), hypertension (HT), subclinical atherosclerosis and liver function tests. In particular, VAT area is associated with T2D, HT and liver function (alanine aminotransaminase) independent of DXA total abdominal fat and body mass index (BMI). CONCLUSIONS: DXA and anthropometric measures can be utilised to derive estimates of visceral fat as a reliable alternative to CT. Visceral fat is heritable and appears to mediate the association between body adiposity and morbidity. This observation is consistent with hypotheses that suggest excess visceral adiposity is causally related to cardiovascular and metabolic disease.
    BMC Cardiovascular Disorders 04/2013; 13(1):25. · 1.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The technique of body composition by dual-energy X-ray absorptiometry (DXA) has been used for several years in the research environment. Its ability to accurately and precisely measure lean, fat, and mineral composition in various body compartments has been well validated. Furthermore, the technique is widely available to clinical patients on existing DXA instruments throughout the world through the use of specific software packages and scanning algorithms. There have been few clear statements regarding the clinical indications for body composition measurement in patients outside the research setting. This is in part because of the lack of specific documented interventions that would be affected by body composition test results, beyond usual clinical advice. We have examined a few of the most common, specific scenarios (HIV therapy, sarcopenia, bariatric surgery, obesity) and proposed indications for body composition assessment. We have also discussed contraindications to body composition testing.
    Journal of Clinical Densitometry 09/2013; · 1.71 Impact Factor

Full-text

View
32 Downloads
Available from
Jun 3, 2014