Article

Muscle type-specific expression of Zasp52 isoforms in Drosophila

Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec, Canada H3A 1B1.
Gene Expression Patterns (Impact Factor: 1.36). 08/2011; 11(8):484-90. DOI: 10.1016/j.gep.2011.08.004
Source: PubMed

ABSTRACT Zasp52 is a member of the PDZ-LIM domain protein family in Drosophila, which comprises Enigma, ENH, ZASP, Alp, CLP36, RIL, and Mystique in vertebrates. Drosophila Zasp52 colocalizes with integrins at myotendinous junctions and with α-actinin at Z-disks, and is required for muscle attachment as well as Z-disk assembly and maintenance. Here we document 13 Zasp52 splice variants giving rise to six different LIM domains. We demonstrate stage- and tissue-specific expression in different muscle types for Zasp52 isoforms encoding different LIM domains. In particular, LIM1b is expressed only in heart muscle and certain somatic muscles, implying muscle-specific functions in Z-disk assembly or maintenance.

0 Followers
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Muscle differentiation requires the assembly of high-order structures called myofibrils, composed of sarcomeres. Even though the molecular organization of sarcomeres is well known, the mechanisms underlying myofibrillogenesis are poorly understood. It has been proposed that integrin-dependent adhesion nucleates myofibril at the periphery of the muscle cell to sustain sarcomere assembly. Here, we report a role for the gene perdido (perd, also known as kon-tiki, a transmembrane chondroitin proteoglycan) in myofibrillogenesis. Expression of perd RNAi in muscles, prior to adult myogenesis, can induce misorientation and detachment of Drosophila adult abdominal muscles. In comparison to controls, perd-depleted muscles contain fewer myofibrils, localized at the cell periphery. These myofibrils are detached from each other and display a defective sarcomeric structure. Our results demonstrate that the extracellular matrix receptor Perd has a specific role in the assembly of myofibrils and in sarcomeric organization. We suggest that Perd acts downstream or in parallel to integrins to enable the connection of nascent myofibrils to the Z-bands. Our work identifies the Drosophila adult abdominal muscles as a model to investigate in vivo the mechanisms behind myofibrillogenesis.
    Journal of Cell Science 05/2014; 127(14). DOI:10.1242/jcs.150425 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ZASP is a cytoskeletal PDZ-LIM protein predominantly expressed in striated muscle. It forms multiprotein complexes and plays a pivotal role in the structural integrity of sarcomeres. Mutations in the ZASP protein are associated with myofibrillar myopathy, left ventricular non-compaction and dilated cardiomyopathy. The ablation of its murine homologue Cypher results in neonatal lethality. ZASP has several alternatively spliced isoforms, in this paper we clarify the nomenclature of its human isoforms as well as their dynamics and expression pattern in striated muscle. Interaction is demonstrated between ZASP and two new binding partners both of which have roles in signalling, regulation of gene expression and muscle differentiation; the mechanosensing protein Ankrd2 and the tumour suppressor protein p53. These proteins and ZASP form a triple complex that appears to facilitate poly-SUMOylation of p53. We also show the importance of two of its functional domains, the ZM-motif and the PDZ domain. The PDZ domain can bind directly to both Ankrd2 and p53 indicating that there is no competition between it and p53 for the same binding site on Ankrd2. However there is competition for this binding site between p53 and a region of the ZASP protein lacking the PDZ domain, but containing the ZM-motif. ZASP is negative regulator of p53 in transactivation experiments with the p53-responsive promoters, MDM2 and BAX. Mutations in the ZASP ZM-motif induce modification in protein turnover. In fact, two mutants, A165V and A171T, were not able to bind Ankrd2 and bound only poorly to alpha-actinin2. This is important since the A165V mutation is responsible for zaspopathy, a well characterized autosomal dominant distal myopathy. Although the mechanism by which this mutant causes disease is still unknown, this is the first indication of how a ZASP disease associated mutant protein differs from that of the wild type ZASP protein.
    PLoS ONE 03/2014; 9(3):e92259. DOI:10.1371/journal.pone.0092259 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study describes the broad tissue distribution and subcellular localization of Drosophila Zasp52, which is related to the large family of ALP (alpha-actinin associated protein)/Enigma PDLIM (PDZ and LIM domain) proteins of vertebrates. Results demonstrate that ZCL423 is a protein trap insertion in the Zasp52 locus tagging multiple endogenous splice isoforms with GFP. While Zasp52 has been previously characterized in muscle tissues primarily, visualization of GFP fluorescence in Zasp52 protein trap lines revealed expression in many nonmuscle tissues including the central nervous system, secretory glands, and epithelial tissues constituting the embryonic epidermis, the somatic follicle cell layer encapsulating the germline during oogenesis, and imaginal disc precursors to the adult body. In epithelial cells, Zasp52 typically accumulated basally, adjacent to integrin adhesion sites, and apically along adherens junctions, particularly enriched near junctional vertices of multicellular interfaces. Also Zasp52 showed polarized accumulation at the leading edge of migrating cell populations and morphogenetic boundaries similarly enriched for myosin. As such, Zasp52 GFP protein traps may be useful molecular markers for dynamic epithelial rearrangements. Moreover, the pattern of Zasp52 expression within nonmuscle tissues reveals potential functional roles in cell-cell and cell-matrix adhesion, specifically at sites of increased actomyosin contractile tension. In these contexts, the investigation of Zasp52 may provide insights into the functions of numerous PDLIM proteins of the metazoan lineages. (C) 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
    Gene Expression Patterns 05/2014; 15:67-79. DOI:10.1016/j.gep.2014.05.002 · 1.36 Impact Factor