Development of a diphtheria toxin based antiporcine CD3 recombinant immunotoxin.

Transplantation Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, United States.
Bioconjugate Chemistry (Impact Factor: 4.58). 08/2011; 22(10):2014-20. DOI: 10.1021/bc200230h
Source: PubMed

ABSTRACT Anti-CD3 immunotoxins, which induce profound but transient T-cell depletion in vivo by inhibiting eukaryotic protein synthesis in CD3+ cells, are effective reagents in large animal models of transplantation tolerance and autoimmune disease therapy. A diphtheria toxin based antiporcine CD3 recombinant immunotoxin was constructed by fusing the truncated diphtheria toxin DT390 with two identical tandem single chain variable fragments (scFv) derived from the antiporcine CD3 monoclonal antibody 898H2-6-15. The recombinant immunotoxin was expressed in a diphtheria-toxin resistant yeast Pichia pastoris strain under the control of the alcohol oxidase promoter. The secreted recombinant immunotoxin was purified sequentially with hydrophobic interaction chromatography (Butyl 650 M) followed by strong anion exchange (Poros 50 HQ). The purified antiporcine CD3 immunotoxin was tested in vivo in four animals; peripheral blood CD3+ T-cell numbers were reduced by 80% and lymph node T-cells decreased from 74% CD3+ cells pretreatment to 24% CD3+ cells remaining in the lymph node following 4 days of immunotoxin treatment. No clinical toxicity was observed in any of the experimental swine. We anticipate that this conjugate will provide an important tool for in vivo depletion of T-cells in swine transplantation models.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of chimerism is an undesirable outcome of allogeneic hematopoietic cell transplantation (HCT) after reduced-intensity conditioning. Understanding the nature of cellular and humoral immune responses to HCT after graft loss could lead to improved retransplantation strategies. We investigated the immunologic responses after graft loss in miniature swine recipients of haploidentical HCT that received reduced-intensity conditioning. After the loss of peripheral blood chimerism, antidonor cellular responses were present without detectable antidonor antibody. Reexposure to donor hematopoietic cells after graft loss induced a sensitized antidonor cellular response. No induced antidonor antibody response could be detected despite evidence of cellular sensitization to donor cells. In contrast, unconditioned animals exposed repeatedly to similar doses of haploidentical donor cells developed antidonor antibody responses. These results could have important implications for the design of treatment strategies to overcome antidonor responses in HCT and improve the outcome of retransplantation after graft loss.
    Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation 08/2012; 18(11):1629-37. · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The porcine CD3 specific monoclonal antibody 898H2-6-15 has been used in allo- and xeno-transplantation studies as a porcine CD3 marker and as an effective T cell depletion reagent when conjugated to the diphtheria toxin mutant, CRM9. A recombinant anti-porcine CD3 immuntoxin was recently developed using single-chain variable fragments (scFv) derived from 898H2-6-15. In this study, using published sequence data, we have expressed the porcine CD3 ectodomain molecules in E. coli through inclusion body isolation and in vitro refolding approach. The expressed and refolded porcine CD3 ectodomain molecules include CD3ε, CD3γ, CD3δ, CD3εγ heterodimer, CD3εδ heterodimer, CD3εγ single-chain fusion protein and CD3εδ single-chain fusion protein. These refolded porcine CD3 ectodomain molecules were purified with a strong anion exchange resin Poros 50HQ. ELISA analysis demonstrated that only the porcine CD3εγ ectodomain single-chain fusion protein can bind to the porcine CD3 specific monoclonal antibody 898H2-6-15. The availability of this porcine CD3εγ ectodomain single-chain fusion protein will allow screening for affinity matured variants of scFv derived from 898H2-6-15 to improve the recombinant anti-porcine CD3 immunotoxin. Porcine CD3εγ ectodomain single-chain fusion protein will also be a very useful reagent to study the soluble phase interaction between porcine CD3εγ and porcine CD3 antibodies such as 898H2-6-15.
    Cellular Immunology 05/2012; 276(1-2):162-7. · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T cells (Tregs) are a subpopulation of CD4(+) T cells which suppress immune responses of effector cells and are known to play a very important role in protection against autoimmune disease development, induction of transplantation tolerance and suppression of effective immune response against tumor cells. An effective in vivo Treg depletion agent would facilitate Treg-associated studies across many research areas. In this study, we have developed diphtheria toxin-based monovalent and bivalent murine IL-2 fusion toxins for depleting murine IL-2 receptor positive cells including CD25(+) Treg in vivo. Their potencies were assessed by in vitro protein synthesis inhibition and cell proliferation inhibition assays using a murine CD25(+) CTLL-2 cell line. Surprisingly, in contrast to our previously developed recombinant fusion toxins, the monovalent isoform (DT390-mIL-2) was approximately 4-fold more potent than its bivalent counterpart (DT390-bi-mIL-2). Binding analysis by flow cytometry demonstrated that the monovalent isoform bound stronger than the bivalent version. In vivo Treg depletion with the monovalent murine IL-2 fusion toxin was performed using C57BL/6J (B6) mice. Spleen Treg were significantly depleted with a maximum reduction of ∼70% and detectable as early as 12 h after the last injection. The spleen Treg numbers were reduced until Day 3 and returned to control levels by Day 7. We believe that this monovalent murine IL-2 fusion toxin will be an effective in vivo murine Treg depleter.
    Protein engineering, design & selection : PEDS. 09/2014; 27(9):289-95.

Full-text (2 Sources)

Available from
May 27, 2014