Limitations (and merits) of PENELOPE as a track-structure code.

Facultat de Física (ECM and ICC), Universitat de Barcelona, Barcelona, Spain.
International Journal of Radiation Biology (Impact Factor: 1.84). 08/2011; 88(1-2):66-70. DOI: 10.3109/09553002.2011.598209
Source: PubMed

ABSTRACT To outline the limitations of PENELOPE (acronym of PENetration and Energy LOss of Positrons and Electrons) as a track-structure code, and to comment on modifications that enable its fruitful use in certain microdosimetry and nanodosimetry applications.
Attention is paid to the way in which inelastic collisions of electrons are modelled and to the ensuing implications for microdosimetry analysis.
Inelastic mean free paths and collision stopping powers calculated with PENELOPE and two well-known optical-data models are compared. An ad hoc modification of PENELOPE is summarized where ionization and excitation of liquid water by electron impact is simulated using tables of realistic differential and total cross sections.
PENELOPE can be employed advantageously in some track-structure applications provided that the default model for inelastic interactions of electrons is replaced by suitable tables of differential and total cross sections.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H(+), He(2+), and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks.Methods: The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. ["Electron inelastic-scattering cross sections in liquid water," Radiat. Phys. Chem. 53, 1-18 (1998); "Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water," Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales.Results: Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C(6+) ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H(+).Conclusions: On average clusters of two to three EDs for 1 MeV/u H(+) and clusters of four to five EDs for 1 MeV/u C(6+) could be expected for a modeling double strand break distance of 3.4 nm.
    Medical Physics 06/2013; 40(6):064101. · 2.91 Impact Factor