Molecular dynamics simulations of water molecule-bridges in polar domains of humic acids.

Institute of Soil Research, University of Natural Resources and Applied Life Sciences Vienna , Peter-Jordan-Strasse 82, A-1190 Vienna, Austria.
Environmental Science & Technology (Impact Factor: 5.48). 08/2011; 45(19):8411-9. DOI: 10.1021/es201831g
Source: PubMed

ABSTRACT The stabilizing effect of water molecule bridges on polar regions in humic substances (HSs) has been investigated by means of molecular dynamics (MD) simulations. The purpose of these investigations was to show the effect of water molecular bridges (WAMB) for cross-linking distant locations of hydrophilic groups. For this purpose, a tetramer of undecanoid fatty acids connected to a network of water molecules has been constructed, which serve as a model for spatially fixed aliphatic chains in HSs terminated by a polar (carboxyl) group. The effect of environmental polarity has been investigated by using solvents of low and medium polarity in force-field MD. A nonpolar environment simulated by n-hexane was chosen to mimic the stability of WAMB in a hydrophilic hotspot surrounded by a nonpolar environment, while the more polar acetonitrile environment was chosen to simulate a more even distribution of polarity around the carboxylic groups and the water molecules. The dynamics simulations show that the rigidity of the oligomer chains is significantly enhanced as soon as the water cluster is large enough to comprise all four carboxyl groups. Increasing the temperature leads to evaporization processes which destabilize the rigidity of the tetramer-water cluster. Embedding it into the nonpolar environment introduces a pronounced cage effect which significantly impedes removal of water molecules from the cluster region. On the other hand, a polar environment facilitates their diffusion from the polar region. One important consequence of these simulations is that although the local water network is the stabilizing factor for the organic matter matrix, the degree of stabilization is additionally affected by the presence of nonpolar surroundings.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose This article reviews our current understanding about how organic chemicals and water interact dynamically with, and therefore coevolve with, soil and sediment natural organic matter (NOM). NOM can be regarded as a polymer-like phase that responds to the input of organic compounds in ways analogous to synthetic polymers. Methods Sorption selectivity of organic compounds is shown to result in part from the three-dimensional microstructure of NOM related to its glassy character. Sorption to NOM conforms to polymer theory by exhibiting isotherm shape and irreversible behaviors characteristic of the glassy organic physical state. The glassy state is a metastable state characterized by the presence of excess free volume (holes). Results In polymers and NOM, incoming molecules preferentially occupy holes due to the absence of a cavitation penalty. Incoming molecules can enlarge existing holes and create new holes that do not relax completely when the molecules leave. The physical changes in NOM induced by sorption result in hysteresis in the isotherm that persists indefinitely at ambient temperature. Conclusions Sorption selectivity and hysteresis have important implications for the fate and bioavailability of contaminants.
    Journal of Soils and Sediments 02/2012; 12:1241-1256. · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the development of nanotechnology, more nanomaterials will enter into water environment system. Studying the existing form of nanomaterials in water environment will help people benefit from the correct use of them and to reduce the harm to human caused by them for some nanomaterials can bring polluting effect. Aggregation is a main behavior for nanoparticle in water environment. NZVI are used widely in many fields resulting in more NZVI in water environment. Molecular dynamics simulations and Materials Studio software are used to investigate the microaggregation behaviors of NZVI particles. Two scenes are involved: (1) particle size of NZVI in each simulation system is the same, but initial distance of two NZVI particles is different; (2) initial distance of two NZVI particles in each simulation system is the same, but particle size of NZVI is different. Atomistic trajectory, NP activity, total energy, and adsorption of H2O are analyzed with MS. The method provides new quantitative insight into the structure, energy, and dynamics of the aggregation behaviors of NZVI particles in water. It is necessary to understand microchange of NPs in water because it can provide theoretical research that is used to reduce polluting effect of NPs on water environment.
    TheScientificWorldJournal. 01/2014; 2014:768780.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Qualitative and quantitative aspects of hydra- tion of four humic acids (HA) and three fulvic acids (FA) originating from different sources were investigated. DSC experiments at subambient temperatures were carried out in order to monitor differences in ice behavior originating from freezable water surrounding humic molecules. It was found that kinetic effects play a significant role in hydra- tion processes of both HA and FA. In fact, the hydration took part over 21 days which was detected as a progressive decrease in ice melting enthalpy. Simultaneously, the peak shapes and positions changed indicating structural changes in the physical structure of the humic substances. In case of FA, the dependency of melting enthalpy on water con- centration showed a linear trend resembling a complete hydration previously observed for water-soluble hydro- philic polymers. In contrast, the melting enthalpy of some HA increased in a step-like way with increasing water content, suggesting preservation of original hydrophobic scaffold during the hydration. The differences between the rather young FA and the rather old HA lead to the con- clusion that water can play a significant role in processes of humification. We assume that separation of hydrophobic and hydrophilic domains and thus increase in nanoscale heterogeneity represents an important physical contribution to the overall humification process. It was also demon- strated that the higher content of oxygen in humic mole- cules is not the only indicator of higher water holding capacity. Instead the porosity of humic matrix seems to contribute as additional parameter into these processes.
    Journal of Thermal Analysis and Calorimetry 01/2012; 110:451-459. · 1.98 Impact Factor

Full-text (2 Sources)

Available from
Dec 7, 2014