Article

No evidence for pathogenic variants or maternal effect of ZFP57 as the cause of Beckwith-Wiedemann Syndrome.

Center for Applied Human Molecular Genetics, The Kennedy Center, Glostrup, Denmark.
European journal of human genetics: EJHG (Impact Factor: 3.56). 08/2011; 20(1):119-21. DOI: 10.1038/ejhg.2011.140
Source: PubMed

ABSTRACT Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome, which, in 50-60% of sporadic cases, is caused by hypomethylation of KCNQ1OT1 differentially methylated region (DMR) at chromosome 11p15.5. The underlying defect of this hypomethylation is largely unknown. Recently, recessive mutations of the ZFP57 gene were reported in patients with transient neonatal diabetes mellitus type 1, showing hypomethylation at multiple imprinted loci, including KCNQ1OT1 DMR in some. The aim of our study was to determine whether ZFP57 alterations were a genetic cause of the hypomethylation at KCNQ1OT1 DMR in patients with BWS. We sequenced ZFP57 in 27 BWS probands and in 23 available mothers to test for a maternal effect. We identified three novel, presumably benign sequence variants in ZFP57; thus, we found no evidence for ZFP57 alterations as a major cause in sporadic BWS cases.

0 Bookmarks
 · 
174 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CONTEXT: Genomic imprinting is the modification of the genome so that genes from only one (rather than two) of the parental alleles are expressed. The mechanism underlying imprinting is epigenetic, occurring via changes in DNA methylation and histone modifications rather than through alterations in the DNA sequence. To date, nine different imprinting disorders have been clinically and genetically identified and a considerable research effort has been focused on determining the cause of the corresponding methylation defects. OBJECTIVE: Our objective was to identify multilocus imprinting defects and characterize any mutations in trans-acting genes in patients with pseudohypoparathyroidism (PHP) caused by epigenetic alterations at GNAS locus. Design: We have investigated multilocus imprinting defects in 22 PHP patients with aberrant methylation at the GNAS locus not due to previously described deletions or to paternal uniparental disomy (UPD) of chromosome 20. RESULTS: We found that, in contrast to what has been described in growth disorders, multilocus hypomethylation is an uncommon event in PHP patients. We were also unable to identify any genetic alteration causative of the epigenetic defects in the currently known methylation regulatory genes. CONCLUSION: Our work suggests that a trans-acting gene regulating the establishment or maintenance of imprinting at GNAS locus, if it exists, should be specific to PHP cases caused by epigenetic defects at GNAS.
    The Journal of Clinical Endocrinology and Metabolism 06/2012; 97(6):1060-7. · 6.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our understanding of Beckwith-Wiedemann syndrome (BWS) has recently been enhanced by advances in its molecular characterization. These advances have further delineated intricate (epi)genetic regulation of the imprinted gene cluster on chromosome 11p15.5 and the role of these genes in normal growth and development. Studies of the molecular changes associated with the BWS phenotype have been instrumental in elucidating critical molecular elements in this imprinted region. This review will provide updated information on the multiple new regulatory elements that have been recently found to contribute to in cis or in trans control of imprinted gene expression in the chromosome 11p15.5 region and the clinical expression of the BWS phenotype. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part C Seminars in Medical Genetics 04/2013; · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting is an epigenetic phenomenon that leads to parent-specific differential expression of a subset of genes. Most imprinted genes form clusters, or imprinting domains, and are regulated by imprinting control regions. As imprinted genes have an important role in growth and development, aberrant expression of imprinted genes due to genetic or epigenetic abnormalities is involved in the pathogenesis of human disorders, or imprinting disorders. Beckwith-Wiedemann syndrome (BWS) is a representative imprinting disorder characterized by macrosomia, macroglossia and abdominal wall defects, and exhibits a predisposition to tumorigenesis. The relevant imprinted chromosomal region in BWS is 11p15.5, which consists of two imprinting domains, IGF2/H19 and CDKN1C/KCNQ1OT1. BWS has five known causative epigenetic and genetic alterations: loss of methylation (LOM) at KvDMR1, gain of methylation (GOM) at H19DMR, paternal uniparental disomy, CDKN1C mutations and chromosomal rearrangements. Opposite methylation defects, GOM and LOM, at H19DMR are known to cause clinically opposite disorders: BWS and Silver-Russell syndrome, respectively. Interestingly, a recent study discovered that loss of function or gain of function of CDKN1C also causes clinically opposite disorders, BWS and IMAGe (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies) syndrome, respectively. Furthermore, several clinical studies have suggested a relationship between assisted reproductive technology (ART) and the risk of imprinting disorders, along with the existence of trans-acting factors that regulate multiple imprinted differentially methylated regions. In this review, we describe the latest knowledge surrounding the imprinting mechanism of 11p15.5, in addition to epigenetic and genetic etiologies of BWS, associated childhood tumors, the effects of ART and multilocus hypomethylation disorders.Journal of Human Genetics advance online publication, 30 May 2013; doi:10.1038/jhg.2013.51.
    Journal of Human Genetics 05/2013; · 2.53 Impact Factor

Full-text (2 Sources)

Download
35 Downloads
Available from
May 21, 2014