Article

Repressor of Estrogen Receptor Activity (REA) Is Essential for Mammary Gland Morphogenesis and Functional Activities: Studies in Conditional Knockout Mice

Department of Molecular and Integrative Physiology, University of Illinois, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801-3704, USA.
Endocrinology (Impact Factor: 4.64). 08/2011; 152(11):4336-49. DOI: 10.1210/en.2011-1100
Source: PubMed

ABSTRACT Estrogen receptor (ER) is a key regulator of mammary gland development and is also implicated in breast tumorigenesis. Because ER-mediated activities depend critically on coregulator partner proteins, we have investigated the consequences of reduction or loss of function of the coregulator repressor of ER activity (REA) by conditionally deleting one allele or both alleles of the REA gene at different stages of mammary gland development. Notably, we find that heterozygosity and nullizygosity for REA result in very different mammary phenotypes and that REA has essential roles in the distinct morphogenesis and functions of the mammary gland at different stages of development, pregnancy, and lactation. During puberty, mice homozygous null for REA in the mammary gland (REAf/f PRcre/+) showed severely impaired mammary ductal elongation and morphogenesis, whereas mice heterozygous for REA (REAf/+ PRcre/+) displayed accelerated mammary ductal elongation, increased numbers of terminal end buds, and up-regulation of amphiregulin, the major paracrine mediator of estrogen-induced ductal morphogenesis. During pregnancy and lactation, mice with homozygous REA gene deletion in mammary epithelium (REAf/f whey acidic protein-Cre) showed a loss of lobuloalveolar structures and increased apoptosis of mammary alveolar epithelium, leading to impaired milk production and significant reduction in growth of their offspring, whereas body weights of the offspring nursed by females heterozygous for REA were slightly greater than those of control mice. Our findings reveal that REA is essential for mammary gland development and has a gene dosage-dependent role in the regulation of stage-specific physiological functions of the mammary gland.

0 Followers
 · 
203 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen and estrogen receptors (ERs) are critical regulators of breast epithelial cell proliferation, differentiation, and apoptosis. Compromised signaling vis-à-vis the estrogen receptor is believed to be a major contributing factor in the malignancy of breast cells. Targeting the ER signaling pathway has been a focal point in the development of breast cancer therapy. Although approximately 75 % of breast cancer patients are classified as luminal type (ER(+)), which predicts for response to endocrine-based therapy; however, innate or acquired resistance to endocrine-based drugs remains a serious challenge. The complexity of regulation for estrogen signaling coupled with the crosstalk of other oncogenic signaling pathways is a reason for endocrine therapy resistance. Alternative strategies that target novel molecular mechanisms are necessary to overcome this current and urgent gap in therapy. A thorough analysis of estrogen-signaling regulation is critical. In this review article, we will summarize current insights into the regulation of estrogen signaling as related to breast carcinogenesis and breast cancer therapy.
    Cellular and Molecular Life Sciences CMLS 06/2013; 71(8). DOI:10.1007/s00018-013-1376-3 · 5.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The steroid hormone, 17β-estradiol (E2), plays critical role in various cellular processes such as cell proliferation, differentiation, migration and apoptosis, and is essential for reproduction and mammary gland development. E2 actions are mediated by two classical nuclear hormone receptors, estrogen receptor α and β (ERs). The activity of ERs depends on the coordinated activity of ligand binding, post-translational modifications (PTMs), and importantly the interaction with their partner proteins called "coregulators." Because coregulators are proved to be crucial for ER transcriptional activity, and majority of breast cancers are ERα positive, an increased interest in the field has led to the identification of a large number of coregulators. In the last decade, gene knockout studies using mouse models provided impetus to our further understanding of the role of these coregulators in mammary gland development. Several coregulators appear to be critical for terminal end bud (TEB) formation, ductal branching and alveologenesis during mammary gland development. The emerging studies support that, coregulators along with the other ER partner proteins called "pioneer factors" together contribute significantly to E2 signaling and mammary cell fate. This review discusses emerging themes in coregulator and pioneer factor mediated action on ER functions, in particular their role in mammary gland cell fate and development.
    Frontiers in Cell and Developmental Biology 08/2014; 2:34. DOI:10.3389/fcell.2014.00034
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The symptoms of vaginal candidiasis exacerbate in the second half of the menstrual cycle in premenopausal women when the serum estradiol level is elevated. Estradiol has been shown to inhibit Th17 differentiation and production of antifungal IL-17 cytokines. However, little is known about the mechanisms. In the present study, we used mouse splenocytes and found that estradiol inhibited Th17 differentiation through downregulation of Rorγt mRNA and protein expression. Estradiol activated estrogen receptor (ER)α to recruit repressor of estrogen receptor activity (REA) and form the ERα/REA complex. This complex bound to three estrogen response element (ERE) half-sites on the Rorγt promoter region to suppress Rorγt expression. Estradiol induced Rea mRNA and protein expression in mouse splenocytes. Using Rea small interfering RNA to knock down Rea expression enhanced Rorγt expression and Th17 differentiation. Alternatively, histone deacetylase 1 and 2 bound to the three ERE half-sites, independent of estradiol. Histone deacetylase inhibitor MS-275 dose- and time-dependently increased Rorγt expression and subsequently enhanced Th17 differentiation. In 15 healthy premenopausal women, high serum estradiol levels are correlated with low RORγT mRNA levels and high REA mRNA levels in the vaginal lavage. These results demonstrate that estradiol upregulates REA expression and recruits REA via ERα to the EREs on the RORγT promoter region, thus inhibiting RORγT expression and Th17 differentiation. This study suggests that the estradiol/ERα/REA axis may be a feasible target in the management of recurrent vaginal candidiasis. Copyright © 2015 by The American Association of Immunologists, Inc.