Article

Biological and mathematical modeling of melanocyte development.

Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405 Orsay, France.
Development (Impact Factor: 6.6). 09/2011; 138(18):3943-54. DOI: 10.1242/dev.067447
Source: PubMed

ABSTRACT We aim to evaluate environmental and genetic effects on the expansion/proliferation of committed single cells during embryonic development, using melanoblasts as a paradigm to model this phenomenon. Melanoblasts are a specific type of cell that display extensive cellular proliferation during development. However, the events controlling melanoblast expansion are still poorly understood due to insufficient knowledge concerning their number and distribution in the various skin compartments. We show that melanoblast expansion is tightly controlled both spatially and temporally, with little variation between embryos. We established a mathematical model reflecting the main cellular mechanisms involved in melanoblast expansion, including proliferation and migration from the dermis to epidermis. In association with biological information, the model allows the calculation of doubling times for melanoblasts, revealing that dermal and epidermal melanoblasts have short but different doubling times. Moreover, the number of trunk founder melanoblasts at E8.5 was estimated to be 16, a population impossible to count by classical biological approaches. We also assessed the importance of the genetic background by studying gain- and loss-of-function β-catenin mutants in the melanocyte lineage. We found that any alteration of β-catenin activity, whether positive or negative, reduced both dermal and epidermal melanoblast proliferation. Finally, we determined that the pool of dermal melanoblasts remains constant in wild-type and mutant embryos during development, implying that specific control mechanisms associated with cell division ensure half of the cells at each cell division to migrate from the dermis to the epidermis. Modeling melanoblast expansion revealed novel links between cell division, cell localization within the embryo and appropriate feedback control through β-catenin.

0 Bookmarks
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt3a and Frizzled-3 are both expressed in the dorsal neural tube that gives rise to the neural crest in Xenopus, zebrafish and mice. Melanocytes originate from the neural crest (NC) and postnatally, melanocyte stem cells reside in the hair follicle bulge and in the dermis. However, the roles of Wnt3a and Frizzled-3 in melanocyte development have not been clarified. The aim of this study was to delineate the expression of Frizzled-3 in murine melanocyte lineage and human melanocytes, and to study the effects of Wnt3a on melanocyte development at various stages. Murine NC explant cultures and three NC-derived melanocyte lineage cell lines, including NCCmelb4M5 (Kit(-) melanocyte precursors), NCCmelb4 (Kit(+) melanoblasts) and NCCmelan5 (differentiated melanocytes), and human epidermal melanocytes were treated with pure recombinant Wnt3a protein and their cell behaviors were analyzed including their proliferation, Kit expression, tyrosinase (Tyr) activity, melanin production, dendrite formation and migration. Frizzled-3 was expressed in Tyr-related protein (TRP)-1(+) cells in NC explant cultures, in all 3 melanocyte precursor cell lines and in human melanocytes. Wnt3a increased the population of TRP-1(+) cells, the number of L-3,4-dihydroxyphenylalanine (DOPA)(+) cells and dendrite formation in NC explant cultures. Wnt3a stimulated the proliferation of all 3 melanocyte precursor cell lines in a dose-dependent manner and also stimulated human melanocyte proliferation. Moreover, Wnt3a increased Tyr activity and melanin content of differentiated melanocytes, but did not activate Tyr activity in melanoblasts. Wnt3a stimulated dendrite formation in differentiated melanocytes, but not in melanoblasts. Wnt3a did not affect melanoblast or melanocyte migration. Wnt3a did not induce c-Kit expression in Kit(-) NCCmelb4M5 cells and did not affect c-Kit expression in any cell line tested. Frizzled-3 is constitutively expressed in murine melanocyte precursors, melanocytes and human melanocytes. Wnt3a and Frizzled-3 signalings play important roles in regulating the proliferation and differentiation of murine NCCs and various developmental stages of melanocyte precursors. The effect of Wnt3a on human melanocytes is similar to its effects on murine melanocytes. Therefore Wnt3a/Frizzled-3 signaling is a promising target for human melanocyte regeneration.
    Journal of dermatological science 05/2014; · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melanocytic neoplasms are a diverse group of benign and malignant tumors with variable clinical features. While some models still promote the epidermal melanocyte as the origin of melanocytic neoplasms, clinical findings are inconsistent with this theory for the majority of tumors. Despite advances in nevus and melanoma biology, the location and differentiation status of the cell of origin remains undefined. Germ line genetics, biological state and cellular location of the mutated cell, as well as local environmental factors all likely play a role in the development of melanocytic neoplasms. Herein, we will review potential models for melanocytic neoplasia and discuss research challenges and opportunities. This article is protected by copyright. All rights reserved.
    Experimental Dermatology 03/2014; · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deregulation of signaling pathways that control differentiation, expansion and migration of neural crest-derived melanoblasts during normal development contributes also to melanoma progression and metastasis. Although several epithelial-to-mesenchymal (EMT) transcription factors, such as zinc finger E-box binding protein 1 (ZEB1) and ZEB2, have been implicated in neural crest cell biology, little is known about their role in melanocyte homeostasis and melanoma. Here we show that mice lacking Zeb2 in the melanocyte lineage exhibit a melanoblast migration defect and, unexpectedly, a severe melanocyte differentiation defect. Loss of Zeb2 in the melanocyte lineage results in a downregulation of the Microphthalmia-associated transcription factor (Mitf) and melanocyte differentiation markers concomitant with an upregulation of Zeb1. We identify a transcriptional signaling network in which the EMT transcription factor ZEB2 regulates MITF levels to control melanocyte differentiation. Moreover, our data are also relevant for human melanomagenesis as loss of ZEB2 expression is associated with reduced patient survival.Cell Death and Differentiation advance online publication, 25 April 2014; doi:10.1038/cdd.2014.44.
    Cell death and differentiation 04/2014; · 8.24 Impact Factor

Full-text

View
123 Downloads
Available from
Jun 2, 2014