Article

Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition.

Functional Ceramics Group, Functional Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, Changwon, Gyeongnam, Korea.
Journal of Biomaterials Applications (Impact Factor: 2.76). 08/2011; DOI: 10.1177/0885328211415723
Source: PubMed

ABSTRACT Dense and well-adherent fluoridated hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2-x )F( x ), FHA] coatings with various amounts of fluorine contents (x = 0, 0.5, 1.0, 1.5, and 2.0) were deposited on commercially available pure titanium by aerosol deposition using FHA powders in order to investigate the effect of fluorine content on the properties of the coatings. FHA powders with different compositions were synthesized by solid-state reactions of hydroxyapatite (HA) and fluorapatite (FA) powders at various ratios. X-ray diffraction and Fourier transform infrared spectroscopy results showed that fluoride ions were successfully incorporated into the HA lattice for both the FHA powders and the FHA coatings. Scanning electron microscopy analysis revealed dense microstructures and good substrate adhesion of the coatings with high adhesion strengths of more than 33.1 MPa. The dissolution behavior in a tris-buffered saline solution indicated that the dissolution rate of the FHA coatings decreased as a result of increasing the fluorine content in the coatings. In addition, in vitro cellular tests, including cell attachment, proliferation, and alkaline phosphatase activity of MC3T3-E1 preosteoblast cells grown on the coatings, demonstrated that an FHA coating with a moderate degree of F(-) substitution, x = 1.0, had a stronger stimulating effect on cell proliferation and differentiation. These results suggested that there exists an optimum fluorine content level in the FHA coatings for the best long-term stability and cellular responses.

0 Bookmarks
 · 
188 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyetheretherketone (PEEK) has attracted much interest as biomaterial for interbody fusion cages due to its similar stiffness to bone and good radio-transparency for post-op visualization. Hydroxyapatite (HA) coating stimulates bone growth to the medical implant. The objective of this work is to make an implant consisting of biocompatible PEEK with an osteoconductive HA surface for spinal or orthopedic applications. Highly dense and well-adhered HA coating was developed on medical-grade PEEK using aerosol deposition (AD) without thermal degradation of the PEEK. The HA coating had a dense microstructure with no cracks or pores, and showed good adhesion to PEEK at adhesion strengths above 14.3 MPa. The crystallinity of the HA coating was remarkably enhanced by hydrothermal annealing as post-deposition heat-treatment. In addition, in vitro and in vivo biocompatibility of PEEK, in terms of cell adhesion morphology, cell proliferation, differentiation, and bone-to-implant contact ratio, were remarkably enhanced by the HA coating through AD.
    Applied Surface Science 10/2013; · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The heterogeneous precipitation of calcium-phosphates on calcium hydroxyapatite (Ca10(PO4)6(OH)2 or HAP) in the presence and absence of fluoride is important in the formation of bone and teeth, protection against tooth decay, dental and skeletal fluorosis and defluoridation of drinking water. Strontium hydroxyapatite (Sr10(PO4)6(OH)2 or SrHAP) and strontium carbonate (SrCO3) were used as calcium-free seed templates in precipitation experiments conducted with varying initial calcium-to-phosphate (Ca/P) or calcium-to-phosphate-to-fluoride (Ca/P/F) ratios. Suspensions of SrHAP or SrCO3 seed templates (which were calcium-limited for both templates and phosphate-limited in the case of SrCO3) were reacted at pH 7.3 (25 °C) over 3 days. The resulting solids were examined with Scanning Transmission Electron Microscopy (STEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Near Edge Structure (XANES), and Extended X-ray Absorption Fine Structure spectroscopy (EXAFS). Calcium apatite was the predominant phase identified by all techniques independent of the added Ca/P ratios and of the presence of fluoride. It was not possible to make an unambiguous distinction between HAP and fluorapatite (Ca10(PO4)6F2, FAP). The apatite was calcium-deficient and probably contained some strontium.
    Journal of Crystal Growth 06/2014; 396:71–78. · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.
    Korean Journal of Materials Research 02/2014; 24(2).