Article

Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: implications for novel approaches to treatment.

Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, USA.
Biological psychiatry (Impact Factor: 9.47). 08/2011; 70(12):1134-42. DOI: 10.1016/j.biopsych.2011.06.029
Source: PubMed

ABSTRACT Schizophrenia (SZ) is associated with functional decoupling between cortical regions, but we do not know whether and where this occurs in low-frequency electromagnetic oscillations. The goal of this study was to use magnetoencephalography (MEG) to identify brain regions that exhibit abnormal resting-state connectivity in the alpha frequency range in patients with schizophrenia and investigate associations between functional connectivity and clinical symptoms in stable outpatient participants.
Thirty patients with SZ and 15 healthy comparison participants were scanned in resting-state MEG (eyes closed). Functional connectivity MEG source data were reconstructed globally in the alpha range, quantified by the mean imaginary coherence between a voxel and the rest of the brain.
In patients, decreased connectivity was observed in left prefrontal cortex (PFC) and right superior temporal cortex, whereas increased connectivity was observed in left extrastriate cortex and the right inferior PFC. Functional connectivity of left inferior parietal cortex was negatively related to positive symptoms. Low left PFC connectivity was associated with negative symptoms. Functional connectivity of midline PFC was negatively correlated with depressed symptoms. Functional connectivity of right PFC was associated with other (cognitive) symptoms.
This study demonstrates direct functional disconnection in SZ between specific cortical fields within low-frequency resting-state oscillations. Impaired alpha coupling in frontal, parietal, and temporal regions is associated with clinical symptoms in these stable outpatients. Our findings indicate that this level of functional disconnection between cortical regions is an important treatment target in SZ.

Download full-text

Full-text

Available from: Adrian G Guggisberg, Jul 04, 2015
1 Follower
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, traditional clinical strategies of professional therapy practitioners, and (b) an even more widely applied pharmaceutical treatment model for neurological and psychiatric treatment domains. With that background, we shall argue that neuroplasticity-based treatments will be an important part of future best-treatment practices in neurological and psychiatric medicine.
    Frontiers in Human Neuroscience 05/2014; 8:385. DOI:10.3389/fnhum.2014.00385 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, Deep Brain Stimulation (DBS) has been evaluated as an experimental therapy for treatment-resistant depression (TRD). While there have been encouraging results in open-label trials, about half of the patients fail to achieve meaningful benefit. Although progress has been made in understanding the neurobiology of MDD, the ability to characterize differences in brain dynamics between those who do and do not benefit from DBS is lacking. In this study we investigated EEG resting state data recorded from 12 patients that have undergone DBS surgery. Of those, six patients were classified as responders to DBS, defined as an improvement of 50% or more on the 17-item Hamilton Rating Scale for Depression (HAMD-17). We compared hemispheric frontal theta and parietal alpha power asymmetry and synchronization asymmetry between responders and non responders. Hemispheric power asymmetry showed statistically significant differences between responders and non-responders with healthy controls showing an asymmetry similar to responders but opposite to non-responders. This asymmetry was characterized by an increase in frontal theta in the right hemisphere relative to the left combined with an increase in parietal alpha in the left hemisphere relative to the right in non-responders compared to responders. Hemispheric mean synchronization asymmetry showed a statistically significant difference between responders and non-responders in the theta band, with healthy controls showing an asymmetry similar to responders but opposite to non-responders. This asymmetry resulted from an increase in frontal synchronization in the right hemisphere relative to the left combined with an increase in parietal synchronization in the left hemisphere relative to the right in non-responders compared to responders. Connectivity diagrams revealed long range differences in frontal/central-parietal connectivity between the two groups in the theta band. This pattern was observed irrespective of whether EEG data were collected with active DBS or with the DBS stimulation turned off, suggesting stable functional and possibly structural modifications that may be attributed to plasticity.Neuropsychopharmacology accepted article preview online, 28 November 2013. doi:10.1038/npp.2013.330.
    Neuropsychopharmacology 11/2013; DOI:10.1038/npp.2013.330 · 7.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CONSIDERING THAT SINGLE LOCATIONS OF STRUCTURAL AND FUNCTIONAL ABNORMALITIES ARE INSUFFICIENT TO EXPLAIN THE DIVERSE PSYCHOPATHOLOGY OF SCHIZOPHRENIA, NEW MODELS HAVE POSTULATED THAT THE IMPAIRMENTS ASSOCIATED WITH THE DISEASE ARISE FROM A FAILURE TO INTEGRATE THE ACTIVITY OF LOCAL AND DISTRIBUTED NEURAL CIRCUITS: the "abnormal neural connectivity hypothesis." In the last years, new evidence coming from neuroimaging have supported and expanded this theory. However, despite the increasing evidence that schizophrenia is a disorder of neural connectivity, so far there are no treatments that have shown to produce a significant change in brain connectivity, or that have been specifically designed to alleviate this problem. Brain-Computer Interfaces based on real-time functional Magnetic Resonance Imaging (fMRI-BCI) are novel techniques that have allowed subjects to achieve self-regulation of circumscribed brain regions. In recent studies, experiments with this technology have resulted in new findings suggesting that this methodology could be used to train subjects to enhance brain connectivity, and therefore could potentially be used as a therapeutic tool in mental disorders including schizophrenia. The present article summarizes the findings coming from hemodynamics-based neuroimaging that support the abnormal connectivity hypothesis in schizophrenia, and discusses a new approach that could address this problem.
    Frontiers in Psychiatry 03/2013; 4:17. DOI:10.3389/fpsyt.2013.00017