Article

An O(N3) implementation of Hedin's GW approximation for molecules.

CPMOH/LOMA, Université de Bordeaux 1, 351 Cours de la Liberation, 33405 Talence, France.
The Journal of Chemical Physics (Impact Factor: 3.12). 08/2011; 135(7):074105. DOI: 10.1063/1.3624731
Source: PubMed

ABSTRACT We describe an implementation of Hedin's GW approximation for molecules and clusters, the complexity of which scales as O(N(3)) with the number of atoms. Our method is guided by two strategies: (i) to respect the locality of the underlying electronic interactions and (ii) to avoid the singularities of Green's functions by manipulating, instead, their spectral functions using fast Fourier transform methods. To take into account the locality of the electronic interactions, we use a local basis of atomic orbitals and, also, a local basis in the space of their products. We further compress the screened Coulomb interaction into a space of lower dimensions for speed and to reduce memory requirements. The improved scaling of our method with respect to most of the published methodologies should facilitate GW calculations for large systems. Our implementation is intended as a step forward towards the goal of predicting, prior to their synthesis, the ionization energies and electron affinities of the large molecules that serve as constituents of organic semiconductors.

0 Bookmarks
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study within the many-body Green's function GW and Bethe-Salpeter formalisms the excitation energies of a paradigmatic model dipeptide, focusing on the four lowest-lying local and charge-transfer excitations. Our GW calculations are performed at the self-consistent level, updating first the quasiparticle energies, and further the single-particle wavefunctions within the static Coulomb-hole plus screened-exchange approximation to the GW self-energy operator. Important level crossings, as compared to the starting Kohn-Sham LDA spectrum, are identified. Our final Bethe-Salpeter singlet excitation energies are found to agree, within 0.07 eV, with CASPT2 reference data, except for one charge-transfer state where the discrepancy can be as large as 0.5 eV. Our results agree best with LC-BLYP and CAM-B3LYP calculations with enhanced long-range exchange, with a 0.1 eV mean absolute error. This has been achieved employing a parameter-free formalism applicable to metallic or insulating extended or finite systems.
    The Journal of Chemical Physics 11/2013; 139(19):194308. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A systematic evaluation of the ionization energy within the GW approximation is carried out for the first row atoms, from H to Ar. We describe a Gaussian basis implementation of the GW approximation, which does not resort to any further technical approximation, besides the choice of the basis set for the electronic wavefunctions. Different approaches to the GW approximation have been implemented and tested, for example, the standard perturbative approach based on a prior mean-field calculation (Hartree-Fock GW@HF or density-functional theory GW@DFT) or the recently developed quasiparticle self-consistent method (QSGW). The highest occupied molecular orbital energies of atoms obtained from both GW@HF and QSGW are in excellent agreement with the experimental ionization energy. The lowest unoccupied molecular orbital energies of the singly charged cation yield a noticeably worse estimate of the ionization energy. The best agreement with respect to experiment is obtained from the total energy differences within the random phase approximation functional, which is the total energy corresponding to the GW self-energy. We conclude with a discussion about the slight concave behavior upon number electron change of the GW approximation and its consequences upon the quality of the orbital energies.
    The Journal of Chemical Physics 05/2012; 136(19):194107. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many-body Green's function perturbation theories, such as the GW and Bethe-Salpeter formalisms, are starting to be routinely applied to study charged and neutral electronic excitations in molecular organic systems relevant to applications in photovoltaics, photochemistry or biology. In parallel, density functional theory and its time-dependent extensions significantly progressed along the line of range-separated hybrid functionals within the generalized Kohn-Sham formalism designed to provide correct excitation energies. We give an overview and compare these approaches with examples drawn from the study of gas phase organic systems such as fullerenes, porphyrins, bacteriochlorophylls or nucleobases molecules. The perspectives and challenges that many-body perturbation theory is facing, such as the role of self-consistency, the calculation of forces and potential energy surfaces in the excited states, or the development of embedding techniques specific to the GW and Bethe-Salpeter equation formalisms, are outlined.
    Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 01/2014; 372(2011):20130271. · 2.89 Impact Factor

Full-text (2 Sources)

View
26 Downloads
Available from
May 22, 2014