Biochemical and morphological characterization of the AβPP/PS/tau triple transgenic mouse model and its relevance to sporadic Alzheimer's disease.

The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA.
Journal of Alzheimer's disease: JAD (Impact Factor: 3.61). 08/2011; 27(2):361-76. DOI: 10.3233/JAD-2011-110608
Source: PubMed

ABSTRACT Transgenic (Tg) mouse models of Alzheimer's disease (AD) have been genetically altered with human familial AD genes driven by powerful promoters. However, a Tg model must accurately mirror the pathogenesis of the human disease, not merely the signature amyloid and/or tau pathology, as such hallmarks can arise via multiple convergent or even by pathogenic mechanisms unrelated to human sporadic AD. The 3 × Tg-AD mouse simultaneously expresses 3 rare familial mutant genes that in humans independently produce devastating amyloid-β protein precursor (AβPP), presenilin-1, and frontotemporal dementias; hence, technically speaking, these mice are not a model of sporadic AD, but are informative in assessing co-evolving amyloid and tau pathologies. While end-stage amyloid and tau pathologies in 3 × Tg-AD mice are similar to those observed in sporadic AD, the pathophysiological mechanisms leading to these lesions are quite different. Comprehensive biochemical and morphological characterizations are important to gauge the predictive value of Tg mice. Investigation of AβPP, amyloid-β (Aβ), and tau in the 3 × Tg-AD model demonstrates AD-like pathology with some key differences compared to human sporadic AD. The biochemical dissection of AβPP reveals different cleavage patterns of the C-terminus of AβPP when compared to human AD, suggesting divergent pathogenic mechanisms. Human tau is concomitantly expressed with AβPP/Aβ from an early age while abundant extracellular amyloid plaques and paired helical filaments are manifested from 18 months on. Understanding the strengths and limitations of Tg mouse AD models through rigorous biochemical, pathological, and functional analyses will facilitate the derivation of models that better approximate human sporadic AD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Besides the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles, neurogenesis and synaptic plasticity are markedly impaired in Alzheimer's disease (AD) possibly contributing to cognitive impairment. In this context, neurotrophic factors serve as a promising therapeutic approach via utilization of regenerative capacity of brain to shift the balance from neurodegeneration to neural regeneration. However, besides more conventional "by stander" effect, to what extent can neurotrophic compounds affect underlying AD pathology remains questionable. Here we investigated the effect of chronic oral treatment with a ciliary neurotrophic factor (CNTF) derived peptidergic compound, P021 (Ac-DGGL(A)G-NH2), on disease pathology both at moderate and severe stages in a transgenic mouse model of AD. 3xTg-AD and wild type female mice were treated for 12 months with P021 or vehicle diet starting at 9-10 months of age. A significant reduction in abnormal hyperphosphorylation and accumulation of tau at known major AD neurofibrillary pathology associated sites was observed. Effect of P021 on Aβ pathology was limited to a significant decrease in soluble Aβ levels and a trend towards reduction in Aβ plaque load in CA1 region of hippocampus, consistent with reduction in Aβ generation and not clearance. This disease modifying effect was probably via increased brain derived neurotrophic factor (BDNF) expression mediated decrease in glycogen synthase kinase-3-β (GSK3β) activity we found in P021 treated 3xTg-AD mice. P021 treatment also rescued deficits in cognition, neurogenesis, and synaptic plasticity in 3xTg-AD mice. These findings demonstrate the potential of the neurotrophic peptide mimetic as a disease modifying therapy for AD.
    Neurobiology of Disease 07/2014; 71. DOI:10.1016/j.nbd.2014.07.001 · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Central to the pathogenesis of Alzheimer's disease (AD) and many other neurodegenerative diseases is the conformational change of a normal self-protein into toxic oligomeric species and amyloid deposits. None of these disorders have an effective therapy, but immunization approaches hold great promise. We have previously shown that active immunization with a novel peptide when polymerized into a stable oligomeric conformation, pBri, induced a humoral immune response to toxic Abeta species in an AD model, APP/PS1 transgenic (Tg) mice, reducing plaque deposits. pBri is a glutaraldehyde polymerized form of the carboxyl fragment of an amyloidogenic protein, which is deposited in the brains of patients with a rare autosomal dominant disease due to a missense mutation in a stop codon, resulting in the translation of an intronic sequence, with no known sequence homology to any mammalian protein. In the current study we tested whether pBri-peptide-based immunomodulation is effective at reducing both vascular amyloid deposits and tau-related pathology using TgSwDI mice with extensive congophilic angiopathy and 3xTg mice with tau pathology. Our results indicate that this immunomodulation approach, which produces a humoral response to proteins in a pathological conformation, is effective at reducing both Abeta and tau-related pathologies. This immunomodulatory approach has the advantage of using a non-self-immunogen that is less likely to be associated with autoimmune toxicity. Furthermore we found that it is able to target all the cardinal features of AD concurrently.
    Journal of Neuroinflammation 12/2013; 10(1):150. DOI:10.1186/1742-2094-10-150 · 4.90 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs.
    RNA 10/2014; 20(12). DOI:10.1261/rna.047225.114 · 4.62 Impact Factor

Full-text (2 Sources)

Available from
Sep 10, 2014