Article

Davallialactone protects against adriamycin-induced cardiotoxicity in vitro and in vivo.

Department of Pediatrics, Chonbuk National University Hospital, 634-18 Keumam-dong, Jeonju 561-712, Republic of Korea.
Journal of Natural Medicines (Impact Factor: 1.52). 08/2011; 66(1):149-57. DOI: 10.1007/s11418-011-0567-1
Source: PubMed

ABSTRACT Adriamycin (ADR) is a potent anticancer drug. Its clinical applications are limited due to its cardiotoxicity. Oxidative stress is responsible for cardiomyopathy induced by ADR. Previous studies have demonstrated that davallialactone (DAVA), extracted from mushroom Inonotus xeranticus, has potential antiplatelet aggregation activity and free radical scavenging properties. In this study, we investigated whether DAVA has protective effects against ADR-induced free radical accumulation and apoptosis in cardiac muscle cells and compared the effects of DAVA with N-acetylcysteine, a potent antioxidant. We evaluated the effect of DAVA on ADR-induced cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and crystal violet staining, the reactive oxygen species (ROS) production by flow cytometry, and the expression of stress-related proteins like Cu/Zn superoxide dismutase (SOD), Mn-SOD, and the involvement of mitogen-activated protein kinase pathway by Western blot analysis. Apoptosis was assessed by nuclear condensation and the expression levels of pro-apoptotic proteins, such as caspase-3 and polyadenosine diphosphate-ribose polymerase (PARP). The cardio-protective effects of DAVA were also evaluated in an in vivo study in an animal model of ADR-induced acute cardiomyopathy. Our results showed that DAVA significantly increased the viability of doxorubicin-injured H9c2 cells and inhibited ADR-induced ROS production, apoptosis, and the expression of Cu/Zn SOD and Mn-SOD. DAVA also inhibited the expression of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), which was activated by ADR. In the in vivo animal model, treatment involving DAVA significantly reduced cardiomyocyte lesions. These results suggest that DAVA is a potentially protective agent for ADR-induced cardiotoxicity in cardiomyocytes and can be a potential candidate to protect against cardiotoxicity in ADR-treated cancer patients.

0 Bookmarks
 · 
167 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Doxorubicin (DOX) is considered as one of the best antineoplastic agents. However, its clinical use is restricted by its associated cardiotoxicity, which is mediated by the production of reactive oxygen species. In this study, 20(S)-ginsenoside Rh2 (Rh2) was explored whether it had protective effects against DOX-induced cardiotoxicity. In vitro study on H9C2 cell line, as well as in vivo investigation in one mouse and one rat model of DOX-induced cardiomyopathy, was carried out. The results showed that pretreatment with Rh2 significantly increased the viability of DOX-injured H9C2 cells. In the mouse model, Rh2 could suppress the DOX-induced release of the cardiac enzymes into serum and improved the occurred pathological changes through ameliorating the decreased antioxidant biomolecules and the cumulated lipid peroxidation malondialdehyde in heart tissues. In the rat model, Rh2 could attenuate the change of ECG resulting from DOX administration. Furthermore, Rh2 enhanced the antitumor activity of DOX in A549 cells. Our findings thus demonstrated that Rh2 pretreatment could effectively alleviate heart injury induced by DOX, and Rh2 might act as a novel protective agent in the clinical usefulness of DOX.
    Evidence-based Complementary and Alternative Medicine 01/2012; 2012:506214. · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is closely associated with acetaminophen (APAP)-induced toxicity. Davallialactone (DAVA), a hispidin analog derived from the mushroom Inonotus xeranticus, has antioxidant properties. This study evaluated whether DAVA plays protective roles against APAP hepatotoxicity in mice. Pretreatments with DAVA (10 mg/kg) prior to exposures of mice to a hepatotoxic dose of 600 mg/kg APAP significantly increased survival rate compared to APAP alone. To verify this effect, mice were treated with 400 mg/kg APAP 30 min after DAVA administration and were then sacrificed after 0.5, 1, 3, and 6 hours. APAP alone caused severe liver injuries as characterized by increased plasma GOT and GPT levels, ATP and GSH depletion, and peroxynitrite and 4-HNE formations. These liver damages induced by APAP were significantly attenuated by DAVA pretreatments. The GSH/GSSG ratio nearly recovered to the levels observed in non-APAP-treated mice at 6 h after APAP treatment in DAVA-pretreated mice. Furthermore, while hepatic ROS levels were increased by APAP exposures, pretreatments with DAVA completely blocked ROS formation. In addition, APAP-induced sustained activations of JNK and ERK were remarkably reduced by DAVA pretreatment. In conclusion, these results suggest that DAVA plays protective roles against APAP-mediated hepatotoxicity through function as ROS scavenger.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 04/2013; · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiotoxicity is an important side effect of cytotoxic drugs and may be a risk factor of long-term morbidity for both patients during therapy and also for staff exposed during the phases of manipulation of antiblastic drugs. The mechanism of cardiotoxicity studied in vitro and in vivo essentially concerns the formation of free radicals leading to oxidative stress, with apoptosis of cardiac cells or immunologic reactions, but other mechanisms may play a role in antiblastic-induced cardiotoxicity. Actually, some new cytotoxic drugs like trastuzumab and cyclopentenyl cytosine show cardiotoxic effects. In this report we discuss the different mechanisms of cardiotoxicity induced by antiblastic drugs assessed using animal models.
    BioMed research international. 01/2014; 2014:240642.

Full-text

View
58 Downloads
Available from
May 27, 2014