Article

Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins.

Department of Chemistry, QOPNA, University of Aveiro, Campus of Santiago, Portugal.
Photochemical and Photobiological Sciences (Impact Factor: 2.92). 08/2011; 10(11):1735-43. DOI: 10.1039/c1pp05174a
Source: PubMed

ABSTRACT This work reports the photophysical and biological evaluation of five cationic porphyrins as photosensitizers (PS) for the photodynamic inactivation (PDI) of Penicillium chrysogenum conidia. Two different cationic porphyrin groups were synthesized from 5,10,15,20-tetrakis(4-pyridyl)porphyrin and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin. The photostability and singlet oxygen generation studies showed that these molecules are photostable and efficient singlet oxygen generators. PDI experiments of P. chrysogenum conidia conducted with 50 μmol L(-1) of photosensitiser under white light at a fluence rate of 200 mW cm(-2) over 20 min showed that the most effective PS caused a 4.1 log reduction in the concentration of viable conidia. The present results show that porphyrins 1a and 1b are more efficient PSs than porphyrin 2a while porphyrins 1c and 2b show no inactivation of P. chrysogenum. It is also clear that the effectiveness of the molecule as PS for antifungal PDI is strongly related with the porphyrin substituent groups, and consequently their solubility in physiological media. The average amount of PS adsorbed per viable conidium was a determining factor in the photoinactivation efficiency and varied between the different studied PSs. Cationic PSs 1a and 1b might be promising anti-fungal PDI agents with potential applications in phytosanitation, biofilm control, bioremediation, and wastewater treatment.

0 Bookmarks
 · 
76 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The photodynamic effect, originally used in photodynamic therapy (PDT) for the treatment of different diseases, e.g. of cancer, has recently been introduced for the inactivation of bacteria. Mold fungi, which provoke health problems like allergies and diseases of the respiratory tract, are even more resistant and their biology is also very different. This study presents the development of four new photosensitizers, which, in combination with low doses of white light, inhibit the germination of mold fungi spores. Two of them even cause lethal damage to the conidia (spores) which are responsible for the spreading of mold fungi. The photoactivity of the newly synthesized corroles was obtained by their application on three different mold fungi: Aspergillus niger, Cladosporium cladosporoides, and Penicillium purpurgenum. To distinguish between inactivation of germination and permanent damage, the fungi were first incubated under illumination for examination of photosensitizer-induced growth inhibition and then left in darkness to test the survival of the conidia. None of the compounds displayed dark toxicity, but all of them attenuated or prevented germination when exposed to light, and the positively charged complexes induced a complete damage of the conidia.
    Journal of photochemistry and photobiology. B, Biology 03/2014; 133C:39-46. · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One environmental concern related to hospital effluents is discharge of them without preliminary treatment. Antimicrobial photodynamic inactivation (PDI) may represent an alternative to the traditional expensive, unsafe and not always effective disinfection methods. The main goal of this work was to assess the efficiency of PDI on clinical multidrug-resistant (MDR) bacteria in hospital wastewaters in order to evaluate its potential use in treating hospital effluents. The efficiency of PDI was assessed using a cationic porphyrin as the photosensitizer (PS), four MDR bacteria either in phosphate buffered saline or in filtrated hospital wastewaters. The synergistic effect of PDI and antibiotics (ampicillin and chloramphenicol) was also evaluated, as well as the effect of the surfactant sodium dodecyl sulfate (SDS). The results show the efficient inactivation of MDR bacteria in PBS (reduction of 6-8 log after 270 min of irradiation at 40 W m(-2) with 5.0 μM of PS). In wastewater, the inactivation of the four MDR bacteria was again efficient and the decrease in bacterial survival starts even sooner. A faster decrease in bacterial survival occurred when PDI was combined with the addition of antibiotics, at sub-inhibitory and inhibitory concentrations, but the SDS did not affect the PDI efficiency. It can be concluded that PDI has potential to be an effective alternative for the inactivation of MDR bacteria in hospital wastewaters and that the presence of antibiotics may enhance its effectiveness.
    Photochemical and Photobiological Sciences 02/2014; · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conjugated polymers (CPs) attract a lot of attention in sensing, imaging, and biomedical applications because of recent achievements that are highlighted in this Research News article. A brief review of recent progress in the application of CP-based energy-transfer systems in antimicrobial and anticancer treatments is provided. The transfer of excitation energy from CPs to photosensitizers leads to the generation of reactive oxygen species (ROS) that are able to efficiently kill pathogenic microorganisms and cancer cells in the surroundings. Both fluorescence resonance energy transfer (FRET) and bioluminescence energy transfer (BRET) modes are discussed.
    Advanced Materials 04/2014; · 14.83 Impact Factor