High Diversity of the Saliva Microbiome in Batwa Pygmies

Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
PLoS ONE (Impact Factor: 3.53). 08/2011; 6(8):e23352. DOI: 10.1371/journal.pone.0023352
Source: PubMed

ABSTRACT We describe the saliva microbiome diversity in Batwa Pygmies, a former hunter-gatherer group from Uganda, using next-generation sequencing of partial 16S rRNA sequences. Microbial community diversity in the Batwa is significantly higher than in agricultural groups from Sierra Leone and the Democratic Republic of Congo. We found 40 microbial genera in the Batwa, which have previously not been described in the human oral cavity. The distinctive composition of the salvia microbiome of the Batwa may have been influenced by their recent different lifestyle and diet.

Download full-text


Available from: Roland Schröder, May 26, 2015
  • Source
    • "The other observed genera include taxa that are not significantly represented in saliva microbiota previously reported. These studies and others indicate that the microbiota may adopt a relatively large number of configurations in both health and disease (Cephas et al., 2011; Nasidze et al., 2011; Luo et al., 2012; Ling et al., 2013). The phylogenetic representation of related species in bacterial communities confer functional redundancy since their genomes encode a relatively high frequency of homologous protein functions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota.
    Frontiers in Cellular and Infection Microbiology 08/2014; 4(108). DOI:10.3389/fcimb.2014.00108 · 2.62 Impact Factor
  • Source
    • "providing a tool for use in the understanding the role of the microbiome in health and disease [Dewhirst et al., 2010]. More recently, high diversity of saliva microbiome in Batwa Pygmies has been documented with 40 microbial genera that had not previously described in human oral cavity [Nasidze et al., 2011]. Such kind of information and database is critically lacking in apes currently faced with the same disease challenges. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Information on the chimpanzee nasopharygeal colonization in captive sanctuaries and in the wild is rare. This study was undertaken to establish the nasopharygeal colonization and potential bacterial pathogens in sanctuary chimpanzees as a basis for improving chimpanzee and employee health. Nasopharygeal colonization of 39 healthy chimpanzees were analyzed by microbiological cultivation method and polymerase chain reaction (PCR) targeting the bacterial 16S rRNA gene. We report four major phyla dominated by Proteobacteria (50%), Fermicutes (35.7%), Bacteriodes (7.1%), and Cynobacteria (7.1%) in healthy semi-captive chimpanzees. Further classification based on 7-base oligomers revealed the following genera: Streptococcus, Veillonella, Neisseria, Prevotella, Kingella and unclassified Cynobacteria, Actinobacillus, Bacteriodes and Pasteurellaceae. On microbiological cultivation we were able to identify and characterize some of the bacteria to species level as Klebsiella pneumonie and Pseudomonas aeruginosa being dominant bacteria with 54.7% and 50% colonization, respectively. Of these, Streptococcus, Neisseria, Klebsiella, and Haemophillus have representatives known to potentially cause severe respiratory disease. Our data present important information on chimpanzee nasopharygeal colonization as a guide to understanding disease processes and pharmaceutical therapies required for improving the health of chimpanzees. The results from this study will guide the processes to improve procedures for routine management of sanctuary chimpanzees and use it as a basis for evaluation of future reintroduction possibilities. Am. J. Primatol. 76:103-110, 2014. © 2013 Wiley Periodicals, Inc.
    American Journal of Primatology 02/2014; 76(2):103-10. DOI:10.1002/ajp.22212 · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Barcoded amplicon sequencing is rapidly becoming a standard method for profiling microbial communities, including the human respiratory microbiome. While this approach has less bias than standard cultivation, several steps can introduce variation including the type of DNA extraction method used. Here we assessed five different extraction methods on pediatric bronchoalveolar lavage (BAL) samples and a mock community comprised of nine bacterial genera to determine method reproducibility and detection limits for these typically low complexity communities. Additionally, using the mock community, we were able to evaluate contamination and select a relative abundance cut-off threshold based on the geometric distribution that optimizes the trade off between detecting bona fide operational taxonomic units and filtering out spurious ones. Using this threshold, the majority of genera in the mock community were predictably detected by all extraction methods including the hard-to-lyse Gram-positive genus Staphylococcus. Differences between extraction methods were significantly greater than between technical replicates for both the mock community and BAL samples emphasizing the importance of using a standardized methodology for microbiome studies. However, regardless of method used, individual patients retained unique diagnostic profiles. Furthermore, despite being stored as raw frozen samples for over five years, community profiles from BAL samples were consistent with historical culturing results. The culture-independent profiling of these samples also identified a number of anaerobic genera that are gaining acceptance as being part of the respiratory microbiome. This study should help guide researchers to formulate sampling, extraction and analysis strategies for respiratory and other human microbiome samples.
    PLoS ONE 04/2012; 7(4):e34605. DOI:10.1371/journal.pone.0034605 · 3.53 Impact Factor
Show more