SEL1L is required for endoplasmic reticulum-associated degradation of misfolded luminal proteins but not transmembrane proteins in chicken DT40 cell line.

Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.
Cell Structure and Function (Impact Factor: 2.35). 08/2011; 36(2):187-95. DOI: 10.1247/csf.11018
Source: PubMed

ABSTRACT Proteins misfolded in the endoplasmic reticulum (ER) are degraded in the cytosol by a ubiquitin-dependent proteasome system, a process collectively termed ER-associated degradation (ERAD). Unraveling the molecular mechanisms of mammalian ERAD progresses more slowly than that of yeast ERAD due to the laborious procedures required for gene targeting and the redundancy of components. Here, we utilized the chicken B lymphocyte-derived DT40 cell line, which exhibits an extremely high homologous recombination frequency, to analyze ERAD mechanisms in higher eukaryotes. We disrupted the SEL1L gene, which encodes the sole homologue of yeast Hrd3p in both chickens and mammals; Hrd3p is a binding partner of yeast Hrd1p, an E3 ubiquitin ligase. SEL1L-knockout cells grew only slightly more slowly than the wild-type cells. Pulse chase experiments revealed that chicken SEL1L was required for ERAD of misfolded luminal proteins such as glycosylated NHK and unglycosylated NHK-QQQ but dispensable for that of misfolded transmembrane proteins such as NHK(BACE) and CD3-δ, as in mammals. The defect of SEL1L-knockout cells in NHK degradation was restored by introduction of not only chicken SEL1L but also mouse and human SEL1L. Deletion analysis showed the importance of Sel1-like tetratricopeptide repeats but not the fibronectin II domain in the function of SEL1L. Thus, our reverse genetic approach using the chicken DT40 cell line will provide highly useful information regarding ERAD mechanisms in higher eukaryotes which express ERAD components redundantly.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins misfolded in the endoplasmic reticulum are cleared by the ubiquitin-dependent proteasome system in the cytosol, a series of events collectively termed endoplasmic reticulum-associated degradation (ERAD). It was previously shown that SEL1L, a partner protein of the E3 ubiquitin ligase HRD1, is required for degradation of misfolded luminal proteins (ERAD-Ls substrates) but not misfolded transmembrane proteins (ERAD-Lm substrates) in both mammalian and chicken DT40 cells. Here, we analyzed ATF6, a type II transmembrane glycoprotein which serves as a sensor/transducer of the unfolded protein response, as a potential ERAD-Lm substrate in DT40 cells. Unexpectedly, degradation of endogenous ATF6 as well as exogenously expressed chicken and human ATF6 by the proteasome required SEL1L. Deletion analysis revealed that the luminal region of ATF6 is a determinant for SEL1L-dependent degradation. Chimeric analysis revealed that the luminal region of ATF6 conferred SEL1L dependency on type I transmembrane protein as well. In contrast, degradation of other known type I ERAD-Lm substrates (BACE457, TCR-α, CD3-δ and CD147) did not require SEL1L. Thus, ATF6 represents a novel type of ERAD-Lm substrate requiring SEL1L for degradation despite its transmembrane nature. In addition, endogenous ATF6 was markedly stabilized in wild-type cells treated with kifunensine, an inhibitor of α1,2-mannosidase in the ER, indicating that degradation of ATF6 required proper mannose trimming. Our further analyses revealed that the five ERAD-Lm substrates examined are classified into three subgroups based on their dependency on mannose trimming and SEL1L. Thus, ERAD-Lm substrates are degraded through much more diversified mechanisms in higher eukaryotes than previously thought.
    Journal of Biological Chemistry 09/2013; DOI:10.1074/jbc.M113.476010 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycoproteins misfolded in the endoplasmic reticulum (ER) are subjected to ER-associated glycoprotein degradation (gpERAD) in which Htm1-mediated mannose trimming from the oligosaccharide Man8GlcNAc2 to Man7GlcNAc2 is the rate-limiting step in yeast. In contrast, the roles of the three Htm1 homologues (EDEM1/2/3) in mammalian gpERAD have remained elusive, with a key controversy being whether EDEMs function as mannosidases or as lectins. We therefore conducted transcription activator-like effector nuclease-mediated gene knockout analysis in human cell line and found that all endogenous EDEMs possess mannosidase activity. Mannose trimming from Man8GlcNAc2 to Man7GlcNAc2 is performed mainly by EDEM3 and to a lesser extent by EDEM1. Most surprisingly, the upstream mannose trimming from Man9GlcNAc2 to Man8GlcNAc2 is conducted mainly by EDEM2, which was previously considered to lack enzymatic activity. Based on the presence of two rate-limiting steps in mammalian gpERAD, we propose that mammalian cells double check gpERAD substrates before destruction by evolving EDEM2, a novel-type Htm1 homologue that catalyzes the first mannose trimming step from Man9GlcNAc2.
    The Journal of Cell Biology 08/2014; 206(3):347-56. DOI:10.1083/jcb.201404075 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum-associated degradation (ERAD) machinery selects native and misfolded polypeptides for dislocation across the ER membrane and proteasomal degradation. Regulated degradation of native proteins is an important aspect of cell physiology. For example, it contributes to the control of lipid biosynthesis, calcium homeostasis and ERAD capacity by setting the turnover rate of crucial regulators of these pathways. In contrast, degradation of native proteins has pathologic relevance when caused by viral or bacterial infections, or when it occurs as a consequence of dysregulated ERAD activity. The efficient disposal of misfolded proteins prevents toxic depositions and persistent sequestration of molecular chaperones that could induce cellular stress and perturb maintenance of cellular proteostasis. In the first section of this review, we survey the available literature on mechanisms of selection of native and non-native proteins for degradation from the ER and on how pathogens hijack them. In the second section, we highlight the mechanisms of ERAD activity adaptation to changes in the ER environment with a particular emphasis on the post-translational regulatory mechanisms collectively defined as ERAD tuning.
    Traffic 03/2013; DOI:10.1111/tra.12068 · 4.71 Impact Factor