Article

Pre-B cell receptor-mediated activation of BCL6 induces pre-B cell quiescence through transcriptional repression of MYC.

Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.
Blood (Impact Factor: 9.78). 08/2011; 118(15):4174-8. DOI: 10.1182/blood-2011-01-331181
Source: PubMed

ABSTRACT Initial cell surface expression of the pre-B cell receptor induces proliferation. After 2 to 5 divisions, however, large pre-BII (Fraction C') cells exit cell cycle to become resting, small pre-BII cells (Fraction D). The mechanism by which pre-BII cells exit cell cycle, however, is currently unclear. The checkpoint at the Fraction C'-D transition is critical for immunoglobulin light chain gene recombination and to prevent malignant transformation into acute lymphoblastic leukemia. Here we demonstrate that inducible activation of pre-B cell receptor signaling induces cell-cycle exit through up-regulation of the transcriptional repressor BCL6. Inducible activation of BCL6 downstream of the pre-B cell receptor results in transcriptional repression of MYC and CCND2. Hence, pre-B cell receptor-mediated activation of BCL6 limits pre-B cell proliferation and induces cellular quiescence at the small pre-BII (Fraction D) stage.

0 Followers
 · 
125 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Study to date suggests that BCL6 protein expression in B-cell neoplasia predominates in germinal center-derived tumors, but less is known regarding its expression in B-lymphoblastic leukemia. Therefore, we designed a comprehensive study of BCL6 expression in B-lymphoblastic leukemia. BCL6, LMO, and HGAL protein expression in B-lymphoblastic leukemia was investigated using immunohistochemical staining of paraffin-embedded bone marrow specimens. Cryptic TCF3(E2A)-PBX1 rearrangements were investigated using interphase fluorescence in situ hybridization. Six (12%) of 52 B-lymphoblastic leukemias demonstrated BCL6 protein expression, with B-cell lymphoblastic leukemias containing a t(1;19) translocation demonstrating the strongest staining (three of three). Additional t(1;19) cases beyond the screening study showed similar results. Public microarray expression database mining showed that BCL6 messenger RNA expression levels in B-lymphoblastic leukemia correlated with the protein expression findings. Finally, other markers of B-cell development correlated with BCL6 expression in t(1;19) B-lymphoblastic leukemia cases, with LMO2 and HGAL proteins expressed in six (67%) of nine and eight (89%) of nine cases, respectively. BCL6 expression is present in a subset of B-lymphoblastic leukemias, especially in cases containing the 1;19 translocation. Investigation for TCF3(E2A)-PBX1 rearrangements may be useful in BCL6-positive B-lymphoblastic leukemia. Copyright© by the American Society for Clinical Pathology.
    American Journal of Clinical Pathology 04/2015; 143(4):547-57. DOI:10.1309/AJCPO4U4VYAAOTEL · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity.
    BMC Genomics 03/2015; 16(1):215. DOI:10.1186/s12864-015-1405-8 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disrupted differentiation during development can lead to oncogenesis, but the underlying mechanisms remain poorly understood. Here we identify BCL6, a transcriptional repressor and lymphoma oncoprotein, as a pivotal factor required for neurogenesis and tumor suppression of medulloblastoma (MB). BCL6 is necessary for and capable of preventing the development of GNP-derived MB in mice, and can block the growth of human MB cells in vitro. BCL6 neurogenic and oncosuppressor effects rely on direct transcriptional repression of Gli1 and Gli2 effectors of the SHH pathway, through recruitment of BCOR corepressor and SIRT1 deacetylase. Our findings identify the BCL6/BCOR/SIRT1 complex as a potent repressor of the SHH pathway in normal and oncogenic neural development, with direct diagnostic and/or therapeutic relevance for SHH MB.
    Cancer Cell 12/2014; 26(6):797. DOI:10.1016/j.ccell.2014.10.021 · 23.89 Impact Factor

Full-text

Download
56 Downloads
Available from
May 20, 2014