Article

Intramolecular aryne-ene reaction: synthetic and mechanistic studies.

Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
Journal of the American Chemical Society (Impact Factor: 11.44). 08/2011; 133(36):14200-3. DOI: 10.1021/ja205405n
Source: PubMed

ABSTRACT Although the chemistry of arynes is well developed, some challenges still remain. The ene reaction of arynes has not gained widespread use in synthesis as a result of poor yields and selectivity. A general, high yielding and selective intramolecular aryne-ene reaction is described providing various benzofused carbo- and heterocycles. Mechanistic data is presented, and a rationale for the resulting stereochemistry is discussed.

0 Bookmarks
 · 
174 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ene reaction is a pericyclic process in which an alkene with an allylic hydrogen atom (the ene donor) reacts with a second unsaturated species (the enophile) to form a new product with a transposed π-bond. The aromatic ene reaction, in which the alkene component is embedded in an aromatic ring, has only been reported in a few (four) instances and has proceeded in low yield (≤6%). Here, we show efficient aromatic ene reactions in which a thermally generated aryne intermediate engages a pendant m-alkylarene substituent to produce a dearomatized isotoluene, itself another versatile but rare reactive intermediate. Our experiments were guided by computational studies that revealed structural features conducive to the aromatic ene process. We proceeded to identify a cascade comprising three reactions: (1) hexadehydro-Diels-Alder (for aryne generation), (2) intramolecular aromatic ene and (3) bimolecular Alder ene. The power of this cascade is evident from the structural complexity of the final products, the considerable scope, and the overall efficiency of these multistage, reagent- and by-product-free, single-pot transformations.
    Nature Chemistry 01/2014; 6(1):34-40. · 21.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the total syntheses of (-)-indolactam V and the C7-substituted indolactam alkaloids (-)-pendolmycin, (-)-lyngbyatoxin A, and (-)-teleocidin A-2. The strategy for preparing indolactam V relies on a distortion-controlled indolyne functionalization reaction to establish the C4-N linkage, in addition to an intramolecular conjugate addition to build the conformationally-flexible nine-membered ring. The total synthesis of indolactam V then sets the stage for the divergent synthesis of the other targeted alkaloids. Specifically, late-stage sp(2)-sp(3) cross-couplings on an indolactam V derivative are used to introduce the key C7 substituents and the necessary quaternary carbons. These challenging couplings, in addition to other delicate manipulations, all proceed in the presence of a basic tertiary amine, an unprotected secondary amide, and an unprotected indole. Thus, our approach not only enables the enantiospecific total syntheses of four indolactam alkaloids, but also serves as a platform for probing complexity-generating and chemoselective transformations in the context of alkaloid total synthesis.
    Chemical Science 06/2014; 5(6):2184-2190. · 8.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Under basic conditions in alcoholic solvents, bromoenynamides undergo palladium‐catalyzed cyclization to cyclic 2‐amidodienes in good to excellent yields. This process represents the first use of an alcohol as a hydride source in an alkyne carbopalladation/termination sequence, with the site selectivity of the reduction showing a strong dependence on the tethering ring size (5–8), and the nature of the alcohol and base. Reaction of the dienes with a range of dienophiles (including alkenes, alkynes and arynes) under various conditions gives bi‐ and tricyclic azacycles, which can be further oxidized to the aromatic azacycles.
    Advanced Synthesis & Catalysis 11/2012; 354(17). · 5.54 Impact Factor

Preview

Download
9 Downloads
Available from