A novel dendrimer based on poly (L-glutamic acid) derivatives as an efficient and biocompatible gene delivery vector

School of Pharmaceutical Sciences and the First Affiliated Hospital, Sun Yat-sen University, 80 Zhongshan Road II, Guangzhou 510080, People's Republic of China.
Nanotechnology (Impact Factor: 3.82). 09/2011; 22(37):375102. DOI: 10.1088/0957-4484/22/37/375102
Source: PubMed


Non-viral gene delivery systems based on cationic polymers have faced limitations related to their relative low gene transfer efficiency, cytotoxicity and system instability in vivo. In this paper, a flexible and pompon-like dendrimer composed of poly (amidoamine) (PAMAM) G4.0 as the inner core and poly (L-glutamic acid) grafted low-molecular-weight polyethylenimine (PLGE) as the surrounding multiple arms was synthesized (MGI dendrimer). The novel MGI dendrimer was designed to combine the merits of size-controlled PAMAM G4.0 and the low toxicity and flexible chains of PLGE. In phosphate-buffered saline dispersions the well-defined DNA/MGI complex above a N/P ratio of 30 showed good stability with particle sizes of approximately 200 nm and a comparatively low polydispersity index. However, the particle size of the DNA/25 kDa polyethylenimine (DNA/PEI 25K) complex was larger than 700 nm under the same salt conditions. The shielding of the compact amino groups at the periphery of flexible PAMAM and biocompatible PLGE chains in MGI resulted in a dramatic decrease of the cytotoxicity compared to native PAMAM G4.0 dendrimer. The in vitro transfection efficiency of DNA/MGI dendrimer complex was higher than that of PAMAM G4.0 dendrimer. Importantly, in serum-containing medium, DNA/MGI complexes at their optimal N/P ratio maintained the same high levels of transfection efficiency as in serum-free medium, while the transfection efficiency of native PAMAM G4.0, PEI 25K and Lipofectamine 2000 were sharply decreased. In vivo gene delivery of pVEGF165/MGI complex into balloon-injured rabbit carotid arteries resulted in significant inhibition of restenosis by increasing VEGF165 expression in local vessels. Therefore, the pompon-like MGI dendrimer may be a promising vector candidate for efficient gene delivery in vivo.

2 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exosomes are biological membrane vesicles measuring 30 to 100nm. They contain an abundance of small molecules like tetraspanins, receptors for targeting and adhesion, lipids, and RNA. They are secreted by most biological cells, and are involved in a plethora of physiological functions including, but not limited to, transport of genetic material, modulation of the immune system, and cell-to-cell communication. It has been further reported that exosomes utilize a mechanism similar to that of viruses for gaining entry into cells. Due to their viral-like transfection efficiency and inherent biological function, compelling evidence indicates that exosomes can be used as novel delivery platforms for gene therapy. Furthermore, RNA-containing exosomes derived from cells can serve as functional genetic biomarkers for diseases. This twin modality of therapeutic and diagnostic is termed theranostics in the emerging field of nanomedicine. Hence in this review, we seek to expound on the various facets of exosomes, highlighting their significance in and relevance to nano-theranostic platforms for gene therapy.
    Advanced drug delivery reviews 07/2012; 65(3). DOI:10.1016/j.addr.2012.06.014 · 15.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aiming to aid polyamidoamine (PAMAM, generation 4, PG4) to overcome gene delivery barriers like extrinsic serum inhibition, intrinsic cytotoxicity and lysosome digestion, histidine motifs modified PAMAM was prepared. The histidine activated PAMAM generation 4 (HPG4) was synthesized via aminolysis reaction and characterized by 1H NMR spectrum and MALDI-TOF-MS. Cytotoxicity profiles of HPG4 on MD-MB-231 cells were significantly improved in the form of polymer and polymer/DNA complexes comparing to PG4. The luciferase protein expression level of HPG4 was 20-, 2.7- and 1.2- fold higher than that of PG4, SuperFect and PEI 25k. Most importantly, flow cytometry and gene transfection studies showed that histidine motifs of HPG4 not only acted as enhancer for faster cellular uptake, but also played an important role on enhancing serum tolerance of the system on cellular uptake and transfection. Among the serum concentrations of 10%-50%, HPG4 showed 10-100 folds higher transfection efficiency than PG4. Intracellular fate observation conducted by confocal microscope provided visual and quantitative evidence that endsomal escape efficiency of HPG4 system was higher than that of PG4. Lastly, the endosomal escape mechanism of HPG4 system was analyzed by endosome destabilization and proton pump inhibition treatment. Collectively, compared to PG4/pDNA, HPG4/pDNA showed improvement on cellular uptake, serum tolerance, cytotoxicity profile, and endosomal escape.
    Biomaterials 08/2012; 33(32):8111-21. DOI:10.1016/j.biomaterials.2012.07.032 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prolongation of longevity is a history-long desire of humans. Driven by the genetic contribution to longevity and the remarkable plasticity of healthy lifespan as demonstrated in animal models, arduous efforts have been directed to aging and longevity research over the years. Today, our understanding of lifespan determination is much greater than it was in the past, but administrable interventions for longevity enhancement are still virtually absent. The aim of this article is to highlight the technical gap between basic biogerontological research and intervention development, and to explore the importance of nucleic acid (NA) delivery technologies in bridging the gap. It is hoped that this article can engender more awareness of the roles of NA delivery technologies in biogerontological interventions, particularly NA therapy.
    Ageing research reviews 09/2012; 12(1):310-315. DOI:10.1016/j.arr.2012.08.003 · 4.94 Impact Factor
Show more