Article

Reslizumab for Poorly Controlled, Eosinophilic Asthma A Randomized, Placebo-controlled Study

Washington University School of Medicine, St. Louis, MO 63110, USA.
American Journal of Respiratory and Critical Care Medicine (Impact Factor: 11.04). 08/2011; 184(10):1125-32. DOI: 10.1164/rccm.201103-0396OC
Source: PubMed

ABSTRACT Eosinophilic asthma is a phenotype of asthma characterized by the persistence of eosinophils in the airways. IL-5 is involved in the activation and survival of eosinophils.
To evaluate the effect of the antibody to IL-5, reslizumab, in patients with eosinophilic asthma that is poorly controlled with high-dose inhaled corticosteroid.
Patients were randomly assigned to receive infusions of reslizumab at 3.0 mg/kg (n = 53) or placebo (n = 53) at baseline and at Weeks 4, 8, and 12, with stratification by baseline Asthma Control Questionnaire (ACQ) score less than or equal to 2 or greater than 2. The primary efficacy measure was the difference between the reslizumab and placebo groups in the change in ACQ score from baseline to end of therapy (Week 15 or early withdrawal).
Mean changes from baseline to end of therapy in ACQ score were -0.7 in the reslizumab group and -0.3 in the placebo group (P = 0.054) and in FEV(1) were 0.18 and -0.08 L, respectively (P = 0.002). In those patients with nasal polyps, the changes in ACQ score were -1.0 and -0.1, respectively (P = 0.012). Median percentage reductions from baseline in sputum eosinophils were 95.4 and 38.7%, respectively (P = 0.007). Eight percent of patients in the reslizumab group and 19% of patients in the placebo group had an asthma exacerbation (P = 0.083). The most common adverse events with reslizumab were nasopharyngitis, fatigue, and pharyngolaryngeal pain.
Patients receiving reslizumab showed significantly greater reductions in sputum eosinophils, improvements in airway function, and a trend toward greater asthma control than those receiving placebo. Reslizumab was generally well tolerated.

0 Bookmarks
 · 
136 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Airway inflammation is considered to be the primary component contributing to the heterogeneity and severity of airway disorders. Therapeutic efficacies of diverse novel biologics targeting the inflammatory pathways are under investigation. One such target is IL-5, a type-1 cytokine that is central to the initiation and sustenance of eosinophilic airway inflammation. Over the past decade, anti-IL5 molecules have been documented to have mixed therapeutic benefits in asthmatics. Post hoc analyses of the trials reiterate the importance of identifying the IL-5-responsive patient endotypes. In fact, the currently available anti-IL5 treatments are being considered beyond asthma management; especially in clinical complications with an underlying eosinophilic pathobiology such as hypereosinophilic syndrome (HES) and eosinophilic granulomatosis and polyangitis (EGPA). In addition, closer analyses of the available data indicate alternative mechanisms of tissue eosinophilia that remain uncurbed with the current dosage and delivery platform of the anti-IL5 molecules.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with severe asthma or COPD have often a suboptimal symptom control due to inadequate treatment. A better understanding of pathogenetic mechanisms, phenotypes, endotypes and the new technologies available in the fields of molecular biology and immunogenetics have made it possible to synthesize specific monoclonal antibodies virtually able to interact with any target antigen, or to open a way for new therapeutic target options. At the moment, the only biologic drug available in clinical practice is omalizumab. To overcome the limits of omalizumab, the research has focused on new monoclonal antibodies presenting higher avidity for IgE (e.g. ligelizumab and lumiximab) and ability to interact also with low affinity IgE receptor (FcϵRII). At present, many new biological drugs with different mechanisms of action and targets are matter of research. It is very important to identify the asthmatic phenotype in order to select the most appropriate drug for the individual patient. The most promising agents are targeted against cytokines of Th2 pattern and related receptors, such as IL-2 (daclizumab) and IL-13 (lebrikizumab) or IL-5 in patients with hypereosinophilia (mepolizumab, reslizumab and benralizumab). Other interesting drugs have as a target TNF-α or its soluble receptor (infliximab, golimumab and etanercept) or IL-1 (canakinumab), a cytokine with an important systemic proinflammatory action. Finally, the discovery of increased levels of C5a in the airways of asthmatic patients has led to the synthesis of a specific monoclonal antibody (eculizumab). Further help should come from the identification of biomarkers that can guide in choosing the best treatment for the individual patient, such as IgE for omalizumab or periostin for lebrikizumab.
    Multidisciplinary respiratory medicine 01/2015; 10(1):1. DOI:10.1186/2049-6958-10-1 · 0.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids are commonly used for treating asthma and its exacerbations but have well-recognised adverse effects and are not always effective. Few alternative treatments exist. Using a murine model of an acute exacerbation of asthma, we assessed the ability of ISU201, a novel protein drug, to suppress the inflammatory response when administered after induction of an exacerbation. Sensitised mice were chronically challenged with a low mass concentration of aerosolised ovalbumin, and then received a single moderate-level challenge to simulate an allergen-induced exacerbation. ISU201 was administered to mice 2 and 8 hours later, while pulmonary inflammation and expression of mRNA for chemokines and proinflammatory cytokines were assessed after 4, 12, and 24 hours. Relative to vehicle-treated controls, ISU201 suppressed accumulation of pulmonary neutrophils and eosinophils, while accelerating the decline in CXCL1, TNF-α, and IL-6 in lavage fluid and lung tissue. ISU201 significantly reduced peak expression of mRNA for the chemokines Cxcl9 and Cxcl10, the adhesion molecules Icam1 and Vcam1, and the proinflammatory cytokines Il1b, Il12p40, and Csf1. The ability of ISU201 to promote resolution of inflammation suggests that it may have potential as an alternative to glucocorticoids in the management of asthma, including when administered after the onset of an acute exacerbation.
    Mediators of Inflammation 2015:405629. DOI:10.1155/2015/405629 · 2.42 Impact Factor

Full-text (2 Sources)

Download
17 Downloads
Available from
Jun 5, 2014