Article

Aneuploidy Drives Genomic Instability in Yeast

David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute (HHMI), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Science (Impact Factor: 31.48). 08/2011; 333(6045):1026-30. DOI: 10.1126/science.1206412
Source: PubMed

ABSTRACT Aneuploidy decreases cellular fitness, yet it is also associated with cancer, a disease of enhanced proliferative capacity. To investigate one mechanism by which aneuploidy could contribute to tumorigenesis, we examined the effects of aneuploidy on genomic stability. We analyzed 13 budding yeast strains that carry extra copies of single chromosomes and found that all aneuploid strains exhibited one or more forms of genomic instability. Most strains displayed increased chromosome loss and mitotic recombination, as well as defective DNA damage repair. Aneuploid fission yeast strains also exhibited defects in mitotic recombination. Aneuploidy-induced genomic instability could facilitate the development of genetic alterations that drive malignant growth in cancer.

0 Followers
 · 
176 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extra chromosome copies markedly alter the physiology of eukaryotic cells, but the underlying reasons are not well understood. We created human trisomic and tetrasomic cell lines and determined the quantitative changes in their transcriptome and proteome in comparison with their diploid counterparts. We found that whereas transcription levels reflect the chromosome copy number changes, the abundance of some proteins, such as subunits of protein complexes and protein kinases, is reduced toward diploid levels. Furthermore, using the quantitative data we investigated the changes of cellular pathways in response to aneuploidy. This analysis revealed specific and uniform alterations in pathway regulation in cells with extra chromosomes. For example, the DNA and RNA metabolism pathways were downregulated, whereas several pathways such as energy metabolism, membrane metabolism and lysosomal pathways were upregulated. In particular, we found that the p62-dependent selective autophagy is activated in the human trisomic and tetrasomic cells. Our data present the first broad proteomic analysis of human cells with abnormal karyotypes and suggest a uniform cellular response to the presence of an extra chromosome.
    Molecular Systems Biology 09/2012; 8:608. DOI:10.1038/msb.2012.40 · 14.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosome positioning at the equator of the mitotic spindle emerges out of a relatively entropic background. At this moment, termed metaphase, all kinetochores have typically captured microtubules leading to satisfaction of the spindle-assembly checkpoint, but the cell does not enter anaphase immediately. The waiting time in metaphase is related to the kinetics of securin and cyclin B1 degradation, which trigger sister-chromatid separation and promote anaphase processivity, respectively. Yet, as judged by metaphase duration, such kinetics vary widely between cell types and organisms, with no evident correlation to ploidy or cell size. During metaphase, many animal and plant spindles are also characterized by a conspicuous "flux" activity characterized by continuous poleward translocation of spindle microtubules, which maintain steady-state length and position. Whether spindle microtubule flux plays a specific role during metaphase remains arguable. Based on known experimental parameters, we have performed a comparative analysis amongst different cell types from different organisms and show that spindle length, metaphase duration and flux velocity combine within each system to obey a quasi-universal rule. As so, knowledge of two of these parameters is enough to estimate the third. This trend indicates that metaphase duration is tuned to allow approximately one kinetochore-to-pole round of microtubule flux. We propose that the time cells spend in metaphase evolved as a quality enhancement step that allows for the uniform stabilization/correction of kinetochore-microtubule attachments, thereby promoting mitotic fidelity.
    Chromosome Research 07/2012; 20(5):563-77. DOI:10.1007/s10577-012-9298-8 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been more than two decades since the original chromosome transmission fidelity (Ctf) screen of Saccharomyces cerevisiae was published. Since that time the spectrum of mutations known to cause Ctf and, more generally, chromosome instability (CIN) has expanded dramatically as a result of systematic screens across yeast mutant arrays. Here we describe a comprehensive summary of the original Ctf genetic screen and the cloning of the remaining complementation groups as efforts to expand our knowledge of the CIN gene repertoire and its mutability in a model eukaryote. At the time of the original screen, it was impossible to predict either the genes and processes that would be overrepresented in a pool of random mutants displaying a Ctf phenotype or what the entire set of genes potentially mutable to Ctf would be. We show that in a collection of 136 randomly selected Ctf mutants, >65% of mutants map to 13 genes, 12 of which are involved in sister chromatid cohesion and/or kinetochore function. Extensive screening of systematic mutant collections has shown that ~350 genes with functions as diverse as RNA processing and proteasomal activity mutate to cause a Ctf phenotype and at least 692 genes are required for faithful chromosome segregation. The enrichment of random Ctf alleles in only 13 of ~350 possible Ctf genes suggests that these genes are more easily mutable to cause genome instability than the others. These observations inform our understanding of recurring CIN mutations in human cancers where presumably random mutations are responsible for initiating the frequently observed CIN phenotype of tumors.
    Chromosoma 12/2011; 121(3):263-75. DOI:10.1007/s00412-011-0356-3 · 3.26 Impact Factor