Article

HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells

Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Development (Impact Factor: 6.27). 08/2011; 138(19):4143-53. DOI: 10.1242/dev.062547
Source: PubMed

ABSTRACT The availability of pluripotent stem cells offers the possibility of using such cells to model hepatic disease and development. With this in mind, we previously established a protocol that facilitates the differentiation of both human embryonic stem cells and induced pluripotent stem cells into cells that share many characteristics with hepatocytes. The use of highly defined culture conditions and the avoidance of feeder cells or embryoid bodies allowed synchronous and reproducible differentiation to occur. The differentiation towards a hepatocyte-like fate appeared to recapitulate many of the developmental stages normally associated with the formation of hepatocytes in vivo. In the current study, we addressed the feasibility of using human pluripotent stem cells to probe the molecular mechanisms underlying human hepatocyte differentiation. We demonstrate (1) that human embryonic stem cells express a number of mRNAs that characterize each stage in the differentiation process, (2) that gene expression can be efficiently depleted throughout the differentiation time course using shRNAs expressed from lentiviruses and (3) that the nuclear hormone receptor HNF4A is essential for specification of human hepatic progenitor cells by establishing the expression of the network of transcription factors that controls the onset of hepatocyte cell fate.

0 Bookmarks
 · 
173 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis B virus (HBV) chronically infects 400 million people worldwide and is a leading driver of end-stage liver disease and liver cancer. Research into the biology and treatment of HBV requires an in vitro cell-culture system that supports the infection of human hepatocytes, and accurately recapitulates virus-host interactions. Here, we report that micropatterned cocultures of primary human hepatocytes with stromal cells (MPCCs) reliably support productive HBV infection, and infection can be enhanced by blocking elements of the hepatocyte innate immune response associated with the induction of IFN-stimulated genes. MPCCs maintain prolonged, productive infection and represent a facile platform for studying virus-host interactions and for developing antiviral interventions. Hepatocytes obtained from different human donors vary dramatically in their permissiveness to HBV infection, suggesting that factors-such as divergence in genetic susceptibility to infection-may influence infection in vitro. To establish a complementary, renewable system on an isogenic background in which candidate genetics can be interrogated, we show that inducible pluripotent stem cells differentiated into hepatocyte-like cells (iHeps) support HBV infection that can also be enhanced by blocking interferon-stimulated gene induction. Notably, the emergence of the capacity to support HBV transcriptional activity and initial permissiveness for infection are marked by distinct stages of iHep differentiation, suggesting that infection of iHeps can be used both to study HBV, and conversely to assess the degree of iHep differentiation. Our work demonstrates the utility of these infectious systems for studying HBV biology and the virus' interactions with host hepatocyte genetics and physiology.
    Proceedings of the National Academy of Sciences 08/2014; 111(33). DOI:10.1073/pnas.1412631111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are noncoding RNAs involved in the regulation of the diverse biological processes such as metabolism, proliferation, and cell cycle, in addition to regulation of differentiation. So far, some miRNAs have been recognized to have important role in regulating hepatic functions. Statistically, let-7f has been revealed as a negative regulator of hepatic differentiation. In the present study, we investigated the effect of let-7f on hepatic differentiation of human adipose tissue-derived stem cells (hADSCs). hADSCs were transduced with recombinant lentivirus containing human inhibitor let-7 f. The expression of hepatocyte nuclear factors alpha (HNF4a), albumin (ALB), alpha fetoprotein (AFP), cytokeratin 18 (CK18), and cytokeratin 19 (CK19) was evaluated using quantitative real-time PCR (qRT-PCR). Immunocytochemistry was used to investigate the expression levels of the hepatocyte markers including ALB, AFP, and HNF4a, and biochemical analysis was implemented for hepatic function, glycogen deposition, and urea secretion. qRT-PCR showed significant upregulation in HNF4a, ALB, AFP, CK18, and CK19 expression in cells transduced with let-7f inhibitor lentiviruses. Moreover, positive staining was detected for ALB, AFP, and HNF4a using immunocytochemistry. Urea production and glycogen deposits were also found in the treated cells, the two specific features of the hepatic cells. Therefore, let-7f silencing led to the increased expression of the hepatocyte-specific factors and the accelerated hADSCs hepatic differentiation. Summing all these finding together, our present report has provided evidences that inhibition of let-7f would facilitate induction of hADSCs into hepatocyte-like cells and possibly in regenerative therapy of the liver disease in a wider spectrum.
    Journal of physiology and biochemistry 07/2014; 70(3). DOI:10.1007/s13105-014-0346-z · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The demonstrated ability to differentiate both human embryonic stem cells (hESCs) and patient-derived induced pluripotent stem cells (hiPSCs) into hepatocyte-like cells (HLCs) holds great promise for both regenerative medicine and liver disease research. Here, we determined that, despite an immature phenotype, differentiated HLCs are permissive to hepatitis C virus (HCV) infection and mount an interferon response to HCV infection in vitro. HLCs differentiated from hESCs and hiPSCs could be engrafted in the liver parenchyma of immune-deficient transgenic mice carrying the urokinase-type plasminogen activator gene driven by the major urinary protein promoter. The HLCs were maintained for more than 3 months in the livers of chimeric mice, in which they underwent further maturation and proliferation. These engrafted and expanded human HLCs were permissive to in vivo infection with HCV-positive sera and supported long-term infection of multiple HCV genotypes. Our study demonstrates efficient engraftment and in vivo HCV infection of human stem cell-derived hepatocytes and provides a model to study chronic HCV infection in patient-derived hepatocytes, action of antiviral therapies, and the biology of HCV infection.
    Journal of Clinical Investigation 10/2014; 124(11). DOI:10.1172/JCI75456 · 13.77 Impact Factor

Full-text

Download
95 Downloads
Available from
May 21, 2014