Article

A TiO2-nanotube-array-based photocatalytic fuel cell using refractory organic compounds as substrates for electricity generation.

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China.
Chemical Communications (Impact Factor: 6.38). 08/2011; 47(37):10314-6. DOI: 10.1039/c1cc13388h
Source: PubMed

ABSTRACT A TiO(2)-nanotube-array-based photocatalytic fuel cell system was established for generation of electricity from various refractory organic compounds and simultaneous wastewater treatment. The present system can respond to visible light and produce obviously enhanced cell performance when a narrow band-gap semiconductor (i.e. Cu(2)O and CdS) was combined with TiO(2) nanotubes.

0 Bookmarks
 · 
302 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A simple wet chemistry method was employed for the synthesis of Bi2S3 hierarchical nanostructure using thioglycolic acid as a capping agent under reflux condition. The obtained products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscope images (HR-TEMs), energy dispersive spectroscopy (EDS), Fourier transform infrared (FT-IR), and nitrogen sorption measurement. FE-SEM and TEM observations displayed that Bi2S3 hierarchical nanostructure assembled from nanorods of about 100nm in length and 5-10nm in diameter was successfully obtained. The photocatalytic activity of the as-prepared samples was evaluated by the photocatalytic degradation of methyl orange under UV irradiation. The results indicated that Bi2S3 hierarchical nanostructure exhibited superior photocatalytic performance to pure Bi2S3, which can be ascribed to large specific surface area, hierarchical nanostructure, and high hydrophilicity.
    Journal of Colloid and Interface Science 04/2013; · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Direct discharging great quantities of organics into water-body not only causes serious environmental pollution but also wastes energy sources. In this paper, a solar responsive dual photoelectrode photocatalytic fuel cell (PFC(2)) based on TiO2/Ti photoanode and Cu2O/Cu photocathode was designed for hazardous organics treatment with simultaneous electricity generation. Under solar irradiation, the interior bias voltage produced for the Fermi level difference between photoelectrodes drives photoelectrons of TiO2/Ti photoanode to combine with photoholes of Cu2O/Cu photocathode through external circuit thus generating electricity. In the meantime, organics are decomposed by photoholes remained at TiO2/Ti photoanode. By using various hazardous organics including azo dyes as model pollutants, the PFC showed high converting performance of organics into electricity. For example, in 0.05M phenol solution, a short-circuit current density 0.23mAcm(-2), open-circuit voltage 0.49V, maximum power output 0.3610(-4)Wcm(-2) was achieved. On the other hand, removal rate of chroma reached 67%, 87% and 63% in 8h for methyl orange, methylene blue, Congo red, respectively.
    Journal of hazardous materials 08/2013; 262C:304-310. · 4.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adsorption and photoelectrocatalytic characteristics of four different kinds of organic compounds (d-fructose, glutamic acid, fumaric acid, and nicotinic acid) on TiO2 nanotube arrays (TNAs) were investigated using a thin-layer cell, wherein the compounds were rapidly and exhaustively oxidized. The photogenerated current–time (I ph–t) profiles were found to be related to the adsorption, the degradation rate, and the reaction mechanism. The relationship between the initial organic compounds concentrations and photocurrent peaks (I 0ph) fit the Langmuir type adsorption model well, thereby confirming that the adsorption of organic compounds on TNAs was via monolayer adsorption. The adsorption equilibrium constant was obtained from the Langmuir equation. The results indicate that the adsorption performance of the organic compounds on TNAs were in the following order: nicotinic acid < d-fructose < glutamic acid < fumaric acid. The degradation of organic compounds on TNAs was classified as either easy or difficult based on the time of complete mineralization (t end) of the organic samples under an equal holes consumption; the degree of degradation were as follows: fumaric acid < d-fructose < glutamic acid < nicotinic acid. The photoelectrocatalytic characteristics of the organic compounds on TNAs were also discussed by analyzing the changes in the I ph –t profiles.
    Journal of Solid State Electrochemistry 16(12). · 2.28 Impact Factor

Full-text

View
216 Downloads
Available from
May 22, 2014