Article

Oxytocin suppresses basal glutamatergic transmission but facilitates activity-dependent synaptic potentiation in the medial prefrontal cortex.

Department of Psychiatry, New York University Langone Medical Center, New York 10016, USA.
Journal of Neurochemistry (Impact Factor: 4.24). 08/2011; 119(2):324-31. DOI: 10.1111/j.1471-4159.2011.07430.x
Source: PubMed

ABSTRACT Both oxytocin and oxytocin receptors are implicated in neuropsychiatric disorders, particularly autism which involves a severe deficit in social cognition. Consistently, oxytocin enhances social cognition in humans and animals. The infralimbic medial prefrontal cortex (IL-mPFC) is believed to play an important role in the regulation of social cognition which might involve top-down control of subcortical structures including the amygdala. However, little is known about whether and how oxytocin modulates synaptic function in the IL-mPFC. The effect of oxytocin on excitatory neurotransmission in the IL-mPFC was studied by examining both the evoked and spontaneous excitatory neurotransmission in the IL-mPFC layer V pyramidal neurons before and after perfusion with oxytocin. To investigate the effect of oxytocin on synaptic plasticity, low-frequency stimulation-induced long-lasting depression was studied in oxytocin-treated brain slices. Oxytocin produced a significant suppression of glutamatergic neurotransmission in the IL-mPFC layer V pyramidal neurons which was mediated by a reduction in glutamate release. Activation of the cannabinoid CB1 receptors was involved in this pre-synaptic effect. Treatment of brain slices with oxytocin for 1 h converted long-lasting depression into long-lasting potentiation of glutamatergic neurotransmission. This oxytocin-mediated plasticity was NMDA receptor-dependent and was mediated by the synaptic insertion of calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors. The aforementioned suppression of basal glutamatergic neurotransmission and facilitation of activity-dependent synaptic plasticity in the IL-mPFC might be critical for the effect of oxytocin on social cognition.

0 Followers
 · 
188 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The last several years have seen an increasing number of studies that describe effects of oxytocin and vasopressin on the behavior of animals or humans. Studies in humans have reported behavioral changes and, through fMRI, effects on brain function. These studies are paralleled by a large number of reports, mostly in rodents, that have also demonstrated neuromodulatory effects by oxytocin and vasopressin at the circuit level in specific brain regions. It is the scope of this review to give a summary of the most recent neuromodulatory findings in rodents with the aim of providing a potential neurophysiological basis for their behavioral effects. At the same time, these findings may point to promising areas for further translational research towards human applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Current Opinion in Neurobiology 10/2014; 29C:187-193. DOI:10.1016/j.conb.2014.09.012 · 6.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN) contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2) expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV). We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs), neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection.
    PLoS ONE 11/2014; 9(11):e112138. DOI:10.1371/journal.pone.0112138 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current neurocircuitry models of anxiety disorders posit a lack of inhibitory tone in the amygdala during acquisition of Pavlovian fear responses and deficient encoding of extinction responses in amygdala-medial prefrontal cortex (mPFC) circuits. Competition between these two responses often results in a return of fear, thus limiting control over anxiety. However, one intriguing hypothesis holds that a pharmacological strategy aimed at reducing amygdala activity while simultaneously augmenting mPFC function could facilitate the extinction of conditioned fear.
    Biological Psychiatry 10/2014; DOI:10.1016/j.biopsych.2014.10.015 · 9.47 Impact Factor

Preview

Download
0 Downloads