Article

Oxytocin suppresses basal glutamatergic transmission but facilitates activity-dependent synaptic potentiation in the medial prefrontal cortex.

Department of Psychiatry, New York University Langone Medical Center, New York 10016, USA.
Journal of Neurochemistry (Impact Factor: 4.24). 08/2011; 119(2):324-31. DOI: 10.1111/j.1471-4159.2011.07430.x
Source: PubMed

ABSTRACT Both oxytocin and oxytocin receptors are implicated in neuropsychiatric disorders, particularly autism which involves a severe deficit in social cognition. Consistently, oxytocin enhances social cognition in humans and animals. The infralimbic medial prefrontal cortex (IL-mPFC) is believed to play an important role in the regulation of social cognition which might involve top-down control of subcortical structures including the amygdala. However, little is known about whether and how oxytocin modulates synaptic function in the IL-mPFC. The effect of oxytocin on excitatory neurotransmission in the IL-mPFC was studied by examining both the evoked and spontaneous excitatory neurotransmission in the IL-mPFC layer V pyramidal neurons before and after perfusion with oxytocin. To investigate the effect of oxytocin on synaptic plasticity, low-frequency stimulation-induced long-lasting depression was studied in oxytocin-treated brain slices. Oxytocin produced a significant suppression of glutamatergic neurotransmission in the IL-mPFC layer V pyramidal neurons which was mediated by a reduction in glutamate release. Activation of the cannabinoid CB1 receptors was involved in this pre-synaptic effect. Treatment of brain slices with oxytocin for 1 h converted long-lasting depression into long-lasting potentiation of glutamatergic neurotransmission. This oxytocin-mediated plasticity was NMDA receptor-dependent and was mediated by the synaptic insertion of calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors. The aforementioned suppression of basal glutamatergic neurotransmission and facilitation of activity-dependent synaptic plasticity in the IL-mPFC might be critical for the effect of oxytocin on social cognition.

0 Followers
 · 
264 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: **Accepted for publication. The neuropeptide oxytocin (OT) has anxiolytic effects in rodents and humans. However, the specific brain regions where OT acts to regulate anxiety requires further investigation. The medial prefrontal cortex (mPFC) has been shown to play a role in the modulation of anxiety-related behavior. In addition, the mPFC contains OT-sensitive neurons, expresses OT receptors, and receives long range axonal projections from OT-producing neurons in the hypothalamus, suggesting that the mPFC may be a target where OT acts to diminish anxiety. To investigate this possibility, females rats were administered OT bilaterally into the prelimbic (PL) region of the mPFC and anxiety-like behavior assessed. In addition, to determine if the effects of OT on anxiety-like behavior are sex dependent and to evaluate the specificity of OT, male and female anxiety-like behavior was tested following delivery of either OT or the closely related neuropeptide arginine vasopressin (AVP) into the PL mPFC. Finally, the importance of endogenous OT in the regulation of anxiety-like behavior was examined in male and female rats that received PL infusions of an OT receptor antagonist (OTR-A). Overall, even though males and females showed some differences in their baseline levels of anxiety-like behavior, OT in the PL region of the mPFC decreased anxiety regardless of sex. In contrast, neither AVP nor an OTR-A affected anxiety-like behavior in males or females. Together, these findings suggest that although endogenous OT in the PL region of the mPFC does not influence anxiety, the PL mPFC is a site where exogenous OT may act to attenuate anxiety-related behavior independent of sex.
    Psychoneuroendocrinology 04/2014; 45:31-42. DOI:10.1016/j.psyneuen.2014.03.009 · 5.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The suggestion that the neurohormone oxytocin may have clinical application in the treatment of schizophrenia was first published in 1972. Since then, a considerable body of research on a variety of fronts--including several recent double-blind treatment trials-has buttressed these early reports, providing support for the assertion that the oxytocin system is a promising and novel therapeutic target for this devastating malady. Herein, we review the diverse, convergent lines of evidence supporting the therapeutic potential of oxytocin in psychotic illness. METHODS: We performed a systematic review of preclinical and clinical literature pertaining to oxytocin's role in schizophrenia. RESULTS: Multiple lines of evidence converge to support the antipsychotic potential of oxytocin. These include several animal models of schizophrenia, pharmacological studies examining the impact of antipsychotics on the oxytocin system, human trials in patients examining aspects of the oxytocin system, and several double-blind, placebo-controlled clinical treatment trials. CONCLUSIONS: There exists considerable, convergent evidence that oxytocin has potential as a novel antipsychotic with a unique mechanism of action. Auspiciously, based on the few chronic trials to date, its safety profile and tolerability appear very good. That said, several critical clinical questions await investigation before widespread use is clinically warranted.
    Acta Neuropsychiatrica 06/2012; 24(3):130-146. DOI:10.1111/j.1601-5215.2011.00634.x · 0.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For most people, their quality of life depends on their successful interdependence with others, which requires sophisticated social cognition, communication, and emotional bonds. Across the lifespan, new bonds must be forged and maintained, and conspecific menaces must be managed. The dynamic nature of the human social landscape suggests ongoing specific alterations in neural circuitry across several brain systems to subserve social behavior. To discover the biological mechanisms that contribute to normal social activities, animal models of social behavior have been developed. One valuable model system has been female rat sexual behavior, which is governed by cyclic variation of ovarian hormones. This behavior is modulated by the neuropeptide oxytocin (OT) through its actions in the hypothalamic ventromedial nucleus (VMH). The fluctuation of this behavior is associated with dendrite remodeling, like several other examples of behavioral plasticity. This review compares hormone-induced plasticity in the VMH with other examples of dendrite plasticity across the mammalian nervous system, namely the neurobehavioral paradigms of environmental enrichment, chronic stress, and incentive sensitization, which affect the neocortex, hippocampal formation, and ventral striatum, respectively. This comparison suggests that the effects of ovarian hormones on VMH neurons in rats, given the simple dendritic arbor and short time course for dendrite remodeling, provide a dual opportunity for mechanistic and functional studies that will shed light on i) the neural actions of OT that regulate social behavior and, ii) behaviorally relevant dendrite regulation in a variety of brain structures. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
    Hormones and Behavior 01/2012; 61(3):251-8. DOI:10.1016/j.yhbeh.2012.01.012 · 4.51 Impact Factor

Preview

Download
1 Download