Article

Epigenetic Therapy for Breast Cancer

Laboratory for Gynecological Oncology, Department of Biomedicine, Women's Hospital, University of Basel, Hebelstrasse 20, Room 420, Basel, CH 4031, Switzerland
International Journal of Molecular Sciences (Impact Factor: 2.34). 12/2011; 12(7):4465-87. DOI: 10.3390/ijms12074465
Source: PubMed

ABSTRACT Both genetic and epigenetic alterations can control the progression of cancer. Genetic alterations are impossible to reverse, while epigenetic alterations are reversible. This advantage suggests that epigenetic modifications should be preferred in therapy applications. DNA methyltransferases and histone deacetylases have become the primary targets for studies in epigenetic therapy. Some DNA methylation inhibitors and histone deacetylation inhibitors are approved by the US Food and Drug Administration as anti-cancer drugs. Therefore, the uses of epigenetic targets are believed to have great potential as a lasting favorable approach in treating breast cancer.

0 Bookmarks
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation and histone modifications are important epigenetic modifications associated with gene (dys) regulation. The epigenetic modifications are balanced by epigenetic enzymes, so-called writers and erasers, such as DNA (de)methylases and histone (de)acetylases. Aberrant epigenetic alterations have been associated with various diseases, including breast cancer. Since aberrant epigenetic modifications are potentially reversible, they might represent targets for breast cancer therapy. Indeed, several drugs have been designed to inhibit epigenetic enzymes (epi-drugs), thereby reversing epigenetic modifications. US Food and Drug Administration approval has been obtained for some epi-drugs for hematological malignancies. However, these drugs have had very modest anti-tumor efficacy in phase I and II clinical trials in breast cancer patients as monotherapy. Therefore, current clinical trials focus on the combination of epi-drugs with other therapies to enhance or restore the sensitivity to such therapies. This approach has yielded some promising results in early phase II trials. The disadvantage of epi-drugs, however, is genome-wide effects, which may cause unwanted upregulation of, for example, pro-metastatic genes. Development of gene-targeted epigenetic modifications (epigenetic editing) in breast cancer can provide a novel approach to prevent such unwanted events. In this context, identification of crucial epigenetic modifications regulating key genes in breast cancer is of critical importance. In this review, we first describe aberrant DNA methylation and histone modifications as two important classes of epigenetic mutations in breast cancer. Then we focus on the preclinical and clinical epigenetic-based therapies currently being explored for breast cancer. Finally, we describe epigenetic editing as a promising new approach for possible applications towards more targeted breast cancer treatment.
    Breast Cancer Research 07/2014; · 5.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylases (HDACs) are important in chromatin remodeling and epigenetic regulation of gene expression. Histone deacetylase inhibitors (HDACi) have highly effective anti-metastatic and anti-angiogenic activity in various types of cancer, while the molecular mechanisms involved in this process are not fully understood. In the present study, trichostatin A (TSA), a HDACi, was found to suppress MCF-7 breast carcinoma cell invasion and upregulate TET1 expression in a dose-dependent manner. TET1, a dioxygenase involved in cytosine demethylation, is downregulated during breast cancer progression. TET1 knockdown in MCF-7 cells facilitates cell invasion, inhibits the expression of tissue inhibitors of metalloproteinase 2/3 (TIMP2/3) and promotes matrix metalloproteinases (MMP) 2/9 transcriptional activity. Importantly, TET1 depletion impaired the inhibitory effect of TSA on breast cancer cell invasion. Together, these results illustrated a mechanism by which TET1 partially mediates HDACi elicited suppression of breast cancer invasion.
    Molecular Medicine Reports 08/2014; 10(5). DOI:10.3892/mmr.2014.2517 · 1.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation and histone modifications are important epigenetic modifications associated with gene (dys)regulation. The epigenetic modifications are balanced by epigenetic enzymes, so-called writers and erasers, such as DNA (de)methylases and histone (de)acetylases. Aberrant epigenetic alterations have been associated with various diseases, including breast cancer. Since aberrant epigenetic modifications are potentially reversible, they might represent targets for breast cancer therapy. Indeed, several drugs have been designed to inhibit epigenetic enzymes (epi-drugs), thereby reversing epigenetic modifications. US Food and Drug Administration approval has been obtained for some epi-drugs for hematological malignancies. However, these drugs have had very modest anti-tumor efficacy in phase I and II clinical trials in breast cancer patients as monotherapy. Therefore, current clinical trials focus on the combination of epi-drugs with other therapies to enhance or restore the sensitivity to such therapies. This approach has yielded some promising results in early phase II trials. The disadvantage of epi-drugs, however, is genome-wide effects, which may cause unwanted upregulation of, for example, pro-metastatic genes. Development of gene-targeted epigenetic modifications (epigenetic editing) in breast cancer can provide a novel approach to prevent such unwanted events. In this context, identification of crucial epigenetic modifications regulating key genes in breast cancer is of critical importance. In this review, we first describe aberrant DNA methylation and histone modifications as two important classes of epigenetic mutations in breast cancer. Then we focus on the preclinical and clinical epigenetic-based therapies currently being explored for breast cancer. Finally, we describe epigenetic editing as a promising new approach for possible applications towards more targeted breast cancer treatment.
    Breast cancer research: BCR 08/2014; 16(4):412. DOI:10.1186/s13058-014-0412-z · 5.88 Impact Factor

Preview (2 Sources)

Download
1 Download
Available from