Article

(+)-Nootkatone and (+)-valencene from rhizomes of Cyperus rotundus increase survival rates in septic mice due to heme oxygenase-1 induction.

Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea.
Journal of ethnopharmacology (Impact Factor: 2.32). 08/2011; 137(3):1311-7. DOI: 10.1016/j.jep.2011.07.062
Source: PubMed

ABSTRACT The rhizomes of Cyperus rotundus have been used as traditional folk medicine for the treatment of inflammatory diseases. However, the mechanism by which extract of rhizomes of Cyperus rotundus (ECR) elicits anti-inflammation has not been extensively investigated so far. The aim of the present study was to test whether heme oxygenase (HO)-1 induction is involved in the anti-inflammatory action of ECR.
Induction of HO-1 and inhibition of inducible nitric oxide synthase (iNOS)/NO production by ECR and its 12 constituents (3 monoterpenes, 5 sesquiterpenes, and 4 aromatic compounds) were investigated using RAW264.7 cells in vitro. In addition, anti-inflammatory action of ECR and its two active ingredients (nookkatone, valencene) were confirmed in sepsis animal model in vivo.
ECR increased HO-1 expression in a concentration-dependent manner, which was correlated with significant inhibition of iNOS/NO production in LPS-activated RAW264.7 cells. Among 12 compounds isolated from ECR, mostly sesquiterpenes induced stronger HO-1 expression than monoterpenes in macrophage cells. Nootkatone and valencene (sesquiterpenes) significantly inhibited iNOS expression and NO production in LPS-simulated RAW264.7 cells. Inhibition of iNOS expression by nootkatone, valencene, and ECR were significantly reduced in siHO-1 RNA transfected cells. Furthermore, all three showed marked inhibition of high mobility group box-1 (HMGB1) in LPS-activated macrophages and increased survival rates in cecal ligation and puncture (CLP)-induced sepsis in mice.
Taken together, we concluded that possible anti-inflammatory mechanism of ECR is, at least, due to HO-1 induction, in which sesquiterpenes such as nootkatone and valencene play a crucial role.

0 Bookmarks
 · 
147 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Excessive bone resorption by osteoclasts causes pathological bone destruction, seen in various bone diseases. There is accumulating evidence that certain herbal extracts have beneficial effects on bone metabolism. The fruits of Alpinia oxyphylla has been traditionally used for the treatment of diarrhea and enuresis. In this study, we investigated the effects of water extract of the fruits of Alpinia oxyphylla (WEAO) on osteoclast differentiation and osteoclast-mediated bone destruction.
    BMC Complementary and Alternative Medicine 09/2014; 14(1):352. · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the hypothesis that the administration of dehydrocostuslactone (DL), a sesquiterpene lactone found in Saussurea lappa Clarke (Compositae), might reduce organ failure and increase survival in a cecal ligation and puncture (CLP)-induced mouse model of sepsis due to HO-1 induction. Treatment of RAW264.7 cells with DL increased HO-1 expression in a time- and concentration-dependent manner, and this up-regulation of HO-1 by DL was significantly inhibited by silencing either Nrf2 and p38 or treating cells with SB203580 (a p38MAPK inhibitor), but it was not inhibited in the presence of SP600125 (an ERK inhibitor), PD98059 (a JNK inhibitor), or LY294002 (PI3K inhibitor). As expected, DL concentration dependently inhibited the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and the productions of NO and PGE2 in LPS-activated cells, and these inhibitions were reversed by silencing HO-1. Most importantly, administration of DL significantly reduced mortality and reduced serum IL-1β and TNF-α and the infiltration of macrophages into liver tissues of CLP-mice. Inducible NOS expression in lung and liver tissues of CLP-mice was reduced by DL, which was reversed by the co-administration of zinc-protoporphyrin IX (ZnPPIX; a competitive inhibitor of HO-1). Our findings indicate that DL might be useful for the treatment of sepsis.
    International Immunopharmacology 07/2014; · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heme oxygenase-1 (HO-1) is a highly inducible and ubiquitous cellular enzyme that sub-serves cytoprotective responses to toxic insults, including inflammation and oxidative stress. In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, brain HO-1 expression is increased, presumably reflecting an endogenous neuroprotective response against ongoing cellular injury. In contrast,we have found in human immunodeficiency virus (HIV) infection of the brain, which is also associated with inflammation, oxidative stress, and neurodegeneration, HO-1 expression is decreased, likely reflecting a unique role for HO-1 deficiency in neurodegeneration pathways activated by HIV infection. We have also shown that HO-1 expression is markedly suppressed by HIV replication in cultured macrophages, which represent the primary cellular reservoir for HIV in the brain. HO-1 deficiency is associated with release of neurotoxic levels of glutamate from both HIV-infected and immune-activated macrophages; this glutamate mediated neurotoxicity is suppressed by pharmacological induction of HO-1 expression in the macrophages.Thus, HO-1 induction could be a therapeutic strategy for neuroprotection against HIV infection and other neuroinflammatory brain diseases. Here, we review various stimuli and signaling pathways regulating HO-1 expression in macrophages, which could promote neuronal survival through HO-1-modulation ofendogenous antioxidant and immune modulatory pathways, thus limiting the oxidative stress that can promote HIV disease progression in the CNS. The use of pharmacological inducers of endogenous HO-1 expression as potential adjunctive neuroprotective therapeutics in HIV infection is also discussed.
    Current HIV Research 05/2014; · 2.14 Impact Factor