(+)-Nootkatone and (+)-valencene from rhizomes of Cyperus rotundus increase survival rates in septic mice due to heme oxygenase-1 induction.

Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea.
Journal of ethnopharmacology (Impact Factor: 2.32). 08/2011; 137(3):1311-7. DOI: 10.1016/j.jep.2011.07.062
Source: PubMed

ABSTRACT The rhizomes of Cyperus rotundus have been used as traditional folk medicine for the treatment of inflammatory diseases. However, the mechanism by which extract of rhizomes of Cyperus rotundus (ECR) elicits anti-inflammation has not been extensively investigated so far. The aim of the present study was to test whether heme oxygenase (HO)-1 induction is involved in the anti-inflammatory action of ECR.
Induction of HO-1 and inhibition of inducible nitric oxide synthase (iNOS)/NO production by ECR and its 12 constituents (3 monoterpenes, 5 sesquiterpenes, and 4 aromatic compounds) were investigated using RAW264.7 cells in vitro. In addition, anti-inflammatory action of ECR and its two active ingredients (nookkatone, valencene) were confirmed in sepsis animal model in vivo.
ECR increased HO-1 expression in a concentration-dependent manner, which was correlated with significant inhibition of iNOS/NO production in LPS-activated RAW264.7 cells. Among 12 compounds isolated from ECR, mostly sesquiterpenes induced stronger HO-1 expression than monoterpenes in macrophage cells. Nootkatone and valencene (sesquiterpenes) significantly inhibited iNOS expression and NO production in LPS-simulated RAW264.7 cells. Inhibition of iNOS expression by nootkatone, valencene, and ECR were significantly reduced in siHO-1 RNA transfected cells. Furthermore, all three showed marked inhibition of high mobility group box-1 (HMGB1) in LPS-activated macrophages and increased survival rates in cecal ligation and puncture (CLP)-induced sepsis in mice.
Taken together, we concluded that possible anti-inflammatory mechanism of ECR is, at least, due to HO-1 induction, in which sesquiterpenes such as nootkatone and valencene play a crucial role.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrosylation of tyrosine (3-nitro tyrosine, 3-NT) has been implicated in the pathophysiology of various disorders particularly neurodegenerative conditions and ageing. Cyperus rotundus rhizome is being used as a traditional folk medicine to alleviate a variety of disorders including neuronal stress. The herb has recently found applications in food and confectionary industries also. In current study, we have explored the protective effects of C. rotundus rhizome extract (CRE) through its oxido-nitrosative and anti apoptotic mechanism to attenuate peroxynitrite (ONOO(-)) induced neurotoxicity using human neuroblastoma SH-SY5Y cells. Our results elucidate that pre-treatment of neurons with CRE ameliorates the mitochondrial and plasma membrane damage induced by 500μM SIN-1 to 80% and 24% as evidenced by MTT and LDH assays. CRE inhibited NO generation by downregulating i-NOS expression. SIN-1 induced depletion of antioxidant enzyme status was also replenished by CRE which was confirmed by immunoblot analysis of SOD and CAT. The CRE pre-treatment efficiently potentiated the SIN-1 induced apoptotic biomarkers such as bcl-2 and caspase-3 which orchestrate the proteolytic damage of the cell. The ONOO(-) induced damage to cellular, nuclear and mitochondrial integrity was also restored by CRE. Furthermore, CRE pre-treatment also regulated the 3-NT formation which shows the potential of plant extract against tyrosine nitration. Taken together, our findings suggest that CRE might be developed as a preventive agent against ONOO(-) induced apoptosis.
    NeuroToxicology 11/2012; · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High mobility group box 1 (HMGB1) plays a crucial mediator in the pathogenesis of many inflammatory diseases. We recently proposed that heme oxygenase-1 (HO-1) negatively regulates HMGB1 in inflammatory conditions. We investigated whether ethanol extract of Inula helenium L.(EIH) activates p38 MAPK/Nrf2/HO-1 pathways in RAW264.7 cells and reduces inflammation in CLP-induced septic mice. EIH induced expression of HO-1 protein in a time- and concentration-dependent manner. EIH significantly diminished HO-1 expression in siNrf2 RNA-transfected cells. As expected, the inhibited expression of iNOS/NO, COX-2/PGE2, HMGB1 release by EIH in LPS-activated RAW264.7 cells was significantly reversed by siHO-1RNA transfection. Furthermore, EIH not only inhibited NF-κB luciferase activity, phosphorylation of IκB in LPS-activated cells but also significantly suppressed expression of adhesion molecules (ICAM-1 and VCAM-1) in TNF-α activated human umbilical vein endothelial cells. The induction of HO-1 by EIH was inhibited by SB203580 but not by SP600125, PD98059, nor LY294002. Most importantly, administration of EIH significantly reduced not only increase in blood HMGB1, ALT, AST, BUN, creatinine levels but also decrease macrophage infiltrate in the liver of septic mice, which were reversed by ZnPPIX, a HO-1 inhibitor. We concluded that EIH has anti-inflammatory effect via the induction of p38 MAPK-dependent HO-1 signaling pathway.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 01/2013; · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.
    Biochemical and Biophysical Research Communications 01/2014; · 2.28 Impact Factor