Article

Phase-separation and domain-formation in cholesterol-sphingomyelin mixture: pulse-EPR oxygen probing.

Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Biophysical Journal (Impact Factor: 3.83). 08/2011; 101(4):837-46. DOI: 10.1016/j.bpj.2011.07.014
Source: PubMed

ABSTRACT Membranes made of Chol/ESM (cholesterol/egg sphingomyelin) mixtures were investigated using saturation-recovery electron paramagnetic resonance spin-labeling methods, in which bimolecular collisions of relaxation agents (oxygen or nickel ethylenediamine diacetic acid) with spin labels are measured. Liquid-disordered (l(d)) and liquid-ordered (l(o)) phases, and cholesterol bilayer domains (CBDs) were discriminated and characterized by profiles of the oxygen transport parameter (OTP). In the l(d) phase, coexisting with the l(o) phase, the OTP profile is bell-shaped and lies above that in the pure ESM membrane. Changes in the OTP profile across the l(o) phase are complex. When the l(o) phase coexists with the l(d) phase, the OTP profile is similar to that across the pure ESM membrane but with a steeper bell shape. With an increase in cholesterol concentration (up to the cholesterol-solubility threshold), the profile becomes rectangular, with low OTP values from the membrane surface to the depth of C9, and high values in the membrane center. This approximately threefold increase in the OTP occurs at the depth at which the rigid ring structure of cholesterol is immersed. Further addition of cholesterol and the formation of the CBD does not affect the OTP profile across the l(o) phase. OTP values in the CBD are significantly lower than in the l(o) phase.

0 Bookmarks
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipid rafts are assumed to undergo biologically important size-modulations from nanorafts to microrafts. Due to the complexity of cellular membranes, model systems become important tools, especially for the investigation of the factors affecting "raft-like" Lo domain size and the search for Lo nanodomains as precursors in Lo microdomain formation. Because lipid compositional change is the primary mechanism by which a cell can alter membrane phase behavior, we studied the effect of the ganglioside GM1 concentration on the Lo/Ld lateral phase separation in PC/SM/Chol/GM1 bilayers. GM1 above 1mol % abolishes the formation of the micrometer-scale Lo domains observed in GUVs. However, the apparently homogeneous phase observed in optical microscopy corresponds in fact, within a certain temperature range, to a Lo/Ld lateral phase separation taking place below the optical resolution. This nanoscale phase separation is revealed by fluorescence spectroscopy, including of C12NBD-PC self-quenching and Laurdan GP measurements, and is supported by Gaussian spectral decomposition analysis. The temperature of formation of nanoscale Lo phase domains over an Ld phase is determined, and is shifted to higher values when the GM1 content increases. A "morphological" phase diagram could be made, and it displays three regions corresponding respectively to Lo/Ld micrometric phase separation, Lo/Ld nanometric phase separation, and to a homogeneous Ld phase. We therefore show that a lipid only-based mechanism is able to control the existence and the sizes of phase-separated membrane domains. GM1 could act on the line tension, "arresting" domain growth and thereby stabilizing Lo nanodomains.
    Biochimica et Biophysica Acta (BBA) - Biomembranes 05/2014; 1838(8). DOI:10.1016/j.bbamem.2014.05.002 · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol%. With spin-labeled cholesterol analogs it was shown that the CBDs begin to form at ~50 mol% cholesterol. It was confirmed by DSC that the cholesterol solubility threshold for DMPC membranes is detected at ~66 mol% cholesterol. At levels above this cholesterol content, monohydrate cholesterol crystals start to form. The major finding is that formation of CBDs precedes formation of cholesterol crystals. The region of the phase diagram for cholesterol contents between 50 and 66 mol% is described as a structured one-phase region in which CBDs have to be supported by the surrounding DMPC bilayer saturated with cholesterol. Thus, the phase boundary located at 66 mol% cholesterol separates the structured one-phase region (liquid-ordered phase of DMPC with CBDs) from the two-phase region where the structured liquid-ordered phase of DMPC coexists with cholesterol crystals. It is likely that CBDs are precursors of monohydrate cholesterol crystals.
    The Journal of Physical Chemistry B 07/2013; 117(30). DOI:10.1021/jp402394m · 3.38 Impact Factor

Preview

Download
0 Downloads
Available from