Article

Objective visual field determination in forensic ophthalmology with an optimized 4-channel multifocal VEP perimetry system: a case report of a patient with retinitis pigmentosa.

Department of Ophthalmology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
Documenta Ophthalmologica (Impact Factor: 1.54). 08/2011; 123(2):121-5. DOI: 10.1007/s10633-011-9283-0
Source: PubMed

ABSTRACT We present the case of a 59-year-old male patient with progressive vision impairment and consecutive visual field narrowing ("tunnel view") for 7 years and a known retinitis pigmentosa for 5 years. The remaining Goldmann perimetric visual field at time reported was less than 5°. A request for blindness-related social benefits was rejected because an ophthalmologic expert assessment suggested malingering. This prompted us to assess an objective determination of the visual field using multifocal VEPs. Objective visual field recordings were performed with a four-channel multifocal VEP-perimeter using 58 stimulus fields (pattern reversal dartboard stimulus configuration). The correlated signal data were processed using an off-line method. At each field, the recording from the channel with the maximal signal-to-noise ratio (SNR) was retained, thus resulting in an SNR optimized virtual recording. Analysis of VEP signals was performed for each single field and concentric rings and compared to an average response measured in five healthy subjects. Substantial VEP responses could be identified in three fields within the innermost ring (eccentricity, 1.7°) for both eyes, although SNR was generally low. More eccentric stimuli did not elicit reliable VEP responses. The mfVEP recording was correlated with perimetric visual field data. The current SNR optimization by using the channel with the largest SNR provides a good method to extract useful data from recordings and may be appropriate for the use in forensic ophthalmology.

0 Bookmarks
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: To assess different effects of image degradation that could result from optic media opacities on multifocal retinal (mfERG) and cortical responses (mfVEP). METHODS: Monocular flash-mfERGs and pattern-reversal mfVEPs were recorded. MfERG-P1 amplitudes and implicit times and mfVEP root-mean-square values (RMS) and delays were compared for different filter conditions (none, 8% luminance, 50% luminance, 50% luminance plus blur) in a total of ten participants with normal vision. RESULTS: Reducing stimulus luminance down to 50% and 8% reduced mfERG amplitudes to 86% and 42%, respectively, with no significant effect on mfVEP amplitude. Implicit times were increased for mfERGs by 0.9ms and 6.0ms, respectively, and for mfVEPs by 1.0ms and 6.3ms, respectively. For '50% luminance plus blur' mfERG amplitudes were significantly reduced centrally and enhanced peripherally and delayed by 1.3ms. MfVEPs were reduced close to noise level independent of eccentricity. CONCLUSIONS: Degradation of the retinal image is a potential source of discrepancies between mfERGs and mfVEPs. Image blur suppresses the mfVEP at all locations and changes mfERG topography, resulting in a selective loss of central responses. SIGNIFICANCE: Considering optic media opacities is of importance for the correct interpretation of mfERG and mfVEP recordings, particularly in elderly patients.
    Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 01/2013; · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been suggested that certain real-world environments can have a restorative effect on an individual, as expressed in changes in cognitive performance and mood. Much of this research builds on Attention Restoration Theory (ART), which suggests that environments that have certain characteristics induce cognitive restoration via variations in attentional demands. Specifically, natural environments that require little top-down processing have a positive effect on cognitive performance, while city-like environments show no effect. We characterized the cognitive restoration effect further by examining (1) whether natural visual stimuli, such as blue spaces, were more likely to provide a restorative effect over urban visual stimuli, (2) if increasing immersion with environment-related sound produces a similar or superior effect, (3) if this effect extends to other cognitive tasks, such as the functional field of view (FFOV), and (4) if we could better understand this effect by providing controls beyond previous works. We had 202 participants complete a cognitive task battery, consisting of a reverse digit span task, the attention network task, and the FFOV task prior to and immediately after a restoration period. In the restoration period, participants were assigned to one of seven conditions in which they listened to natural or urban sounds, watched images of natural or urban environments, or a combination of both. Additionally, some participants were in a control group with exposure to neither picture nor sound. While we found some indication of practice effects, there were no differential effects of restoration observed in any of our cognitive tasks, regardless of condition. We did, however, find evidence that our nature images and sounds were more relaxing than their urban counterparts. Overall, our findings suggest that acute exposure to relaxing pictorial and auditory stimulus is insufficient to induce improvements in cognitive performance.
    Frontiers in Psychology 01/2014; 5:548. · 2.80 Impact Factor

Full-text

View
30 Downloads
Available from
May 20, 2014