Article

Exome sequencing identifies ACSF3 as the cause of Combined Malonic and Methylmalonic Aciduria

Genetics and Molecular Biology Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA.
Nature Genetics (Impact Factor: 29.65). 08/2011; 43(9):883-6. DOI: 10.1038/ng.908
Source: PubMed

ABSTRACT We used exome sequencing to identify the genetic basis of combined malonic and methylmalonic aciduria (CMAMMA). We sequenced the exome of an individual with CMAMMA and followed up with sequencing of eight additional affected individuals (cases). This included one individual who was identified and diagnosed by searching an exome database. We identify mutations in ACSF3, encoding a putative methylmalonyl-CoA and malonyl-CoA synthetase as a cause of CMAMMA. We also examined a canine model of CMAMMA, which showed pathogenic mutations in a predicted ACSF3 ortholog. ACSF3 mutant alleles occur with a minor allele frequency of 0.0058 in ∼1,000 control individuals, predicting a CMAMMA population incidence of ∼1:30,000. ACSF3 deficiency is the first human disorder identified as caused by mutations in a gene encoding a member of the acyl-CoA synthetase family, a diverse group of evolutionarily conserved proteins, and may emerge as one of the more common human metabolic disorders.

Download full-text

Full-text

Available from: Jennifer J Johnston, Jun 24, 2015
0 Followers
 · 
308 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipoate is a covalently bound cofactor essential for five redox reactions in humans: in four 2-oxoacid dehydrogenases and the glycine cleavage system (GCS). Two enzymes are from the energy metabolism, α-ketoglutarate dehydrogenase and pyruvate dehydrogenase; and three are from the amino acid metabolism, branched-chain ketoacid dehydrogenase, 2-oxoadipate dehydrogenase, and the GCS. All these enzymes consist of multiple subunits and share a similar architecture. Lipoate synthesis in mitochondria involves mitochondrial fatty acid synthesis up to octanoyl-acyl-carrier protein; and three lipoate-specific steps, including octanoic acid transfer to glycine cleavage H protein by lipoyl(octanoyl) transferase 2 (putative) (LIPT2), lipoate synthesis by lipoic acid synthetase (LIAS), and lipoate transfer by lipoyltransferase 1 (LIPT1), which is necessary to lipoylate the E2 subunits of the 2-oxoacid dehydrogenases. The reduced form dihydrolipoate is reactivated by dihydrolipoyl dehydrogenase (DLD). Mutations in LIAS have been identified that result in a variant form of nonketotic hyperglycinemia with early-onset convulsions combined with a defect in mitochondrial energy metabolism with encephalopathy and cardiomyopathy. LIPT1 deficiency spares the GCS, and resulted in a combined 2-oxoacid dehydrogenase deficiency and early death in one patient and in a less severely affected individual with a Leigh-like phenotype. As LIAS is an iron-sulphur-cluster-dependent enzyme, a number of recently identified defects in mitochondrial iron-sulphur cluster synthesis, including NFU1, BOLA3, IBA57, GLRX5 presented with deficiency of LIAS and a LIAS-like phenotype. As in DLD deficiency, a broader clinical spectrum can be anticipated for lipoate synthesis defects depending on which of the affected enzymes is most rate limiting.
    Journal of Inherited Metabolic Disease 04/2014; DOI:10.1007/s10545-014-9705-8 · 4.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify the genetic defect associated with autosomal dominant congenital cataract (ADCC) in a Chinese family, in which 11 individuals across four generations are affected with coralliform cataract. Exome sequencing was performed in two of the ADCC-affected family members to scan for potential genetic defects. Sanger sequencing was used to verify these defects in the whole family. By combining whole exome sequencing and Sanger sequencing, the genetic defect was revealed to be a insertion of a cytosine after coding nucleotide 1,361 (1361insC) in the gap junction alpha 3 (GJA3) gene, causing a frameshift at codon 397 (p.Ala397Glyfs×71). This frameshift mutation cosegregates with the ADCC-affected pedigree members, but is absent in unaffected relatives and 100 normal individuals. A 1361 insC mutation in the C-terminus of GJA3 is found to be associated with autosomal dominant congenital coralliform cataract. This finding is similar to that of a previous publication, thus providing further evidence that the GJA3 C-terminal domain is also its mutation area, and further expanding the mutation spectrum of GJA3 in association with congenital cataract.
    Molecular vision 04/2013; 19:789-795. · 2.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The differentiation capability of induced pluripotent stem cells (iPSCs) toward certain cell types for disease modeling and drug screening assays might be influenced by their somatic cell of origin. Here, we have compared the neural induction of human iPSCs generated from fetal neural stem cells (fNSCs), dermal fibroblasts, or cord blood CD34(+) hematopoietic progenitor cells. Neural progenitor cells (NPCs) and neurons could be generated at similar efficiencies from all iPSCs. Transcriptomics analysis of the whole genome and of neural genes revealed a separation of neuroectoderm-derived iPSC-NPCs from mesoderm-derived iPSC-NPCs. Furthermore, we found genes that were similarly expressed in fNSCs and neuroectoderm, but not in mesoderm-derived iPSC-NPCs. Notably, these neural signatures were retained after transplantation into the cortex of mice and paralleled with increased survival of neuroectoderm-derived cells in vivo. These results indicate distinct origin-dependent neural cell identities in differentiated human iPSCs both in vitro and in vivo.
    Cell Reports 09/2014; DOI:10.1016/j.celrep.2014.08.014 · 7.21 Impact Factor

Similar Publications