Article

Roles of glucose in photoreceptor survival.

Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 08/2011; 286(40):34700-11. DOI: 10.1074/jbc.M111.279752
Source: PubMed

ABSTRACT Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD(+), TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.

0 Bookmarks
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. The human eye is a complex organ whose anatomy and functions has been described very well to date. Unfortunately, the knowledge of the biochemistry and metabolic properties of eye tissues varies. Our objective was to reveal the biochemical differences between main tissue components of human eyes. Methods. Corneas, irises, ciliary bodies, lenses, and retinas were obtained from cadaver globes 0-1/2 hours postmortem of 6 male donors (age: 44–61 years). The metabolic profile of tissues was investigated with HR MAS 1 H NMR spectroscopy. Results. A total of 29 metabolites were assigned in the NMR spectra of the eye tissues. Significant differences between tissues were revealed in contents of the most distant eye-tissues, while irises and ciliary bodies showed minimal biochemical differences. ATP, acetate, choline, glutamate, lactate, myoinositol, and taurine were identified as the primary biochemical compounds responsible for differentiation of the eye tissues. Conclusions. In this study we showed for the first time the results of the analysis of the main human eye tissues with NMR spectroscopy. The biochemical contents of the selected tissues seemed to correspond to their primary anatomical and functional attributes, the way of the delivery of the nutrients, and the location of the tissues in the eye.
    The Scientific World Journal 11/2014; 2014(ID 546192):1-9. · 1.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atrophic age-related and juvenile macular degeneration are especially devastating due to lack of an effective cure. Two retinal cell types, photoreceptor cells and the adjacent retinal pigmented epithelium (RPE), reportedly display the earliest pathological changes. Abca4(-/-)Rdh8(-/-) mice, which mimic many features of human retinal degeneration, allowed us to determine the sequence of light-induced events leading to retinal degeneration. Using two-photon microscopy with 3D reconstruction methodology, we observed an initial strong retinoid-derived fluorescence and expansion of Abca4(-/-)Rdh8(-/-) mouse rod cell outer segments accompanied by macrophage infiltration after brief exposure of the retina to bright light. Additionally, light-dependent fluorescent compounds produced in rod outer segments were not transferred to the RPE of mice genetically defective in RPE phagocytosis. Collectively, these findings suggest that for light-induced retinopathies in mice, rod photoreceptors are the primary site of toxic retinoid accumulation and degeneration, followed by secondary changes in the RPE.
    Proceedings of the National Academy of Sciences 03/2014; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, while other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knockout mice, caused a rapid and specific induction of the PERK pathway of the Unfolded Protein Response. These changes were not observed in the cGMP-gated channel knockout rods, an "equivalent light" condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or UPR induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the UPR as a potential target for therapeutic intervention.
    Journal of Biological Chemistry 09/2014; · 4.60 Impact Factor