Article

CD44(+)/CD24(-/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome

Department of Pathology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
Human pathology (Impact Factor: 2.81). 08/2011; 43(3):364-73. DOI: 10.1016/j.humpath.2011.05.005
Source: PubMed

ABSTRACT Women classified as having triple-negative tumors have a poor prognosis. The importance of CD44(+)/CD24(-/low) (stem/progenitor cell-phenotype) in breast cancer patients has also been appreciated. However, correlation between triple negativity and CD44(+)/CD24(-/low) with tumor recurrence remains elusive. In the present study, we evaluated tumor specimens of 50 breast cancer patients with known hormone receptor status for whom we had follow-up information and outcome data available, and performed immunohistochemistry analysis to determine CD44 and CD24 expression. Gene expression arrays were also independently performed on 52 breast cancer specimens with banked frozen tissue. Lastly, we used FVBN202 transgenic mouse model of breast carcinoma and determined the hormone receptor status, the proportion of CD44(+)/CD24(-/low) breast cancer stem-like cells, and the behavior of the tumor. We determined that patients with triple-negative tumors had significantly higher incidence of recurrence or distant metastasis associated with increased frequency of breast cancer stem cell phenotypes compared with those with non-triple-negative tumors. Preclinical studies in FVBN202 transgenic mice confirmed these findings by showing that relapsed tumors were triple negative and had significantly higher frequency of breast cancer stem cells compared with their related primary tumors. Unlike non-triple-negative primary tumors, relapsed triple-negative tumors were tumorigenic at low doses when inoculated into FVBN202 transgenic mice. These findings suggest that CD44(+)/CD24(-/low) breast cancer stem-like cells play an important role in the clinical behavior of triple-negative breast cancer and that development of therapeutic targets directed to breast cancer stem-like cells may lead to reduction in the aggressiveness of triple-negative breast cancers.

0 Followers
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Basal-like breast cancer is an aggressive tumor subtype with a poor response to conventional therapies. Tumor formation and relapse are sustained by a cell subset of Breast Cancer Stem Cells (BrCSCs). Here we show that miR-100 inhibits maintenance and expansion of BrCSCs in basal-like cancer through Polo-like kinase1 (Plk1) down-regulation. Moreover, miR-100 favors BrCSC differentiation, converting a basal like phenotype into luminal. It induces the expression of a functional estrogen receptor (ER) and renders basal-like BrCSCs responsive to hormonal therapy. The key role played by miR-100 in breast cancer free-survival is confirmed by the analysis of a cohort of patients' tumors, which shows that low expression of miR-100 is a negative prognostic factor and is associated with gene signatures of high grade undifferentiated tumors. Our findings indicate a new possible therapeutic strategy, which could make aggressive breast cancers responsive to standard treatments.
    Oncotarget 12/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared to medium control (P<0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signalling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltranferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared to control (P<0.01 for both CLDN4 and FUT4 mRNA expression; P<0.001 for CLDN4 and P<0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Molecular Human Reproduction 02/2015; DOI:10.1093/molehr/gav007 · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2'-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their "malignant memory".
    01/2015; 7(1):137-48. DOI:10.4252/wjsc.v7.i1.137