Studying Gene and Gene-Environment Effects of Uncommon and Common Variants on Continuous Traits: A Marker-Set Approach Using Gene-Trait Similarity Regression

Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA.
The American Journal of Human Genetics (Impact Factor: 10.99). 08/2011; 89(2):277-88. DOI: 10.1016/j.ajhg.2011.07.007
Source: PubMed

ABSTRACT Genomic association analyses of complex traits demand statistical tools that are capable of detecting small effects of common and rare variants and modeling complex interaction effects and yet are computationally feasible. In this work, we introduce a similarity-based regression method for assessing the main genetic and interaction effects of a group of markers on quantitative traits. The method uses genetic similarity to aggregate information from multiple polymorphic sites and integrates adaptive weights that depend on allele frequencies to accomodate common and uncommon variants. Collapsing information at the similarity level instead of the genotype level avoids canceling signals that have the opposite etiological effects and is applicable to any class of genetic variants without the need for dichotomizing the allele types. To assess gene-trait associations, we regress trait similarities for pairs of unrelated individuals on their genetic similarities and assess association by using a score test whose limiting distribution is derived in this work. The proposed regression framework allows for covariates, has the capacity to model both main and interaction effects, can be applied to a mixture of different polymorphism types, and is computationally efficient. These features make it an ideal tool for evaluating associations between phenotype and marker sets defined by linkage disequilibrium (LD) blocks, genes, or pathways in whole-genome analysis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Accounting for gene-environment (GxE) interactions in complex trait association studies can facilitate our understanding of genetic heterogeneity under different environmental exposures, improve the ability to discover susceptible genes that exhibit little marginal effect, provide insight into the biological mechanisms of complex diseases, help to identify high-risk subgroups in the population, and uncover hidden heritability. However, significant GxE interactions can be difficult to find. The sample sizes required for sufficient power to detect association are much larger than those needed for genetic main effects, and interactions are sensitive to misspecification of the main effects model. These issues are exacerbated when working with binary phenotypes and rare variants, which bear less information on association. In this work, we present a similarity-based regression method for evaluating GxE interactions for rare variants with binary traits. The proposed model aggregates the genetic and GxE information across markers using genetic similarity thus increasing the ability to detect GxE signals. The model has a random effects interpretation, which leads to robustness against main effect misspecifications when evaluating GxE interactions. We construct score tests to examine GxE interactions and a computationally efficient EM algorithm to estimate the nuisance variance components. Using simulations and data applications, we show that the proposed method is a flexible and powerful tool to study the GxE effect in common or rare variant studies with binary traits. Copyright © 2015, The Genetics Society of America.
    Genetics 01/2015; DOI:10.1534/genetics.114.171686 · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic association studies of psychiatric outcomes often consider interactions with environmental exposures and, in particular, apply tests that jointly consider gene and gene-environment interaction effects for analysis. Using a genome-wide association study (GWAS) of posttraumatic stress disorder (PTSD), we report that heteroscedasticity (defined as variability in outcome that differs by the value of the environmental exposure) can invalidate traditional joint tests of gene and gene-environment interaction.
    JAMA Psychiatry 10/2014; 71(12). DOI:10.1001/jamapsychiatry.2014.1339 · 12.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studying complex diseases in the post genome-wide association studies (GWAS) era has led to developing methods that consider factor-sets rather than individual genetic/environmental factors (i.e., Multi-G-Multi-E studies), and mining for potential gene-environment (G×E) interactions has proven to be an invaluable aid in both discovery and deciphering underlying biological mechanisms. Current approaches for examining effect profiles in Multi-G-Multi-E analyses are either underpowered due to large degrees of freedom, ill-suited for detecting G×E interactions due to imprecise modeling of the G and E effects, or lack of capacity for modeling interactions between two factor-sets (e.g., existing methods focus primarily on a single E factor). In this work, we illustrate the issues encountered in constructing kernels for investigating interactions between two factor-sets, and propose a simple yet intuitive solution to construct the G×E kernel that retains the ease-of-interpretation of classic regression. We also construct a series of kernel machine (KM) score tests to evaluate the complete effect profile (i.e., the G, E, and G×E effects individually or in combination). We show, via simulations and a data application, that the proposed KM methods outperform the classic and PC regressions across a range of scenarios, including varying effect size, effect structure, and interaction complexity. The largest power gain was observed when the underlying effect structure involved complex G×E interactions; however, the proposed methods have consistent, powerful performance when the effect profile is simple or complex, suggesting that the proposed method could be a useful tool for exploratory or confirmatory G×E analysis. © 2014 WILEY PERIODICALS, INC.
    Genetic Epidemiology 02/2015; 39(2). DOI:10.1002/gepi.21877 · 2.95 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014