Menin induces endodermal differentiation in aggregated P19 stem cells by modulating the retinoic acid receptors

Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Dr, Bldg 50, Room 5232, Bethesda, MD 20892, USA.
Molecular and Cellular Biochemistry (Impact Factor: 2.39). 08/2011; 359(1-2):95-104. DOI: 10.1007/s11010-011-1003-2
Source: PubMed


Menin, a ubiquitously expressed protein, is the product of the multiple endocrine neoplasia type I (Men1) gene, mutations of which cause tumors primarily of the parathyroid, endocrine pancreas, and anterior pituitary. Menin-null mice display early embryonic lethality, and thus imply a critical role for menin in early development. In this study, using the P19 embryonic carcinoma stem cells, we studied menin's role in cell differentiation. Menin expression is induced in P19 cell aggregates by retinoic acid (RA). Menin over-expressing stable clones proliferated in a significantly reduced rate compared to the empty vector harboring cells. RA induced cell death in aggregated menin over-expressing cells. However, in the absence of RA, specific populations of the aggregated menin over-expressing cells displayed the characteristic of an endodermal phenotype by the acquisition of cytokeratin Endo A expression (TROMA-1), a marker for the primitive endoderm, with a concomitant loss of the stem cell marker SSEA-1. Menin's ability to induce endodermal differentiation in specific populations of the aggregated cells in the absence of RA implied that menin could substitute RA by inducing a set of target genes that are RA responsive. Menin over-expressing cells upon aggregation showed a robust expression of RA receptors (RAR), RARα, β, and γ relative to the empty vector-harboring cells. Moreover, endodermal differentiation was inhibited by the pan-RAR antagonist Ro41-5253, suggesting that menin could induce endodermal differentiation of uncommitted cells by functionally modulating the RARs.

Download full-text


Available from: Jyotshna Kanungo, Oct 06, 2015
18 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differentiation of P19 embryonal carcinoma cells in response to the morphogen retinoic acid is regulated by Galpha(12/13) and is associated with activation of c-Jun N-terminal kinase. The role of MEKK1 and MEKK4 upstream of the c-Jun N-terminal kinase was investigated in P19 cells. P19 clones stably expressing constitutively active and dominant negative mutants of MEKK1 and MEKK4 were created and characterized. Expression of the constitutively active form of either MEKK1 or MEKK4 mimicked the action of retinoic acid, inducing these embryonal carcinoma cells to primitive endoderm. Expression of the dominant negative form of MEKK1 had no influence on the ability of retinoic acid to induce either JNK activation or primitive endoderm formation in P19 stem cells. Expression of the dominant negative form of MEKK4, in contrast, effectively blocks both morphogen-induced activation of JNK and cellular differentiation. These data identify MEKK4 as upstream of c-Jun N-terminal kinase in the pathway mediating differentiation of P19 stem cells to primitive endoderm.
    Journal of Biological Chemistry 09/2000; 275(31):24032-9. DOI:10.1074/jbc.M002747200 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Mixed-Lineage Leukemia (MLL) protein is a histone methyltransferase that is mutated in clinically and biologically distinctive subsets of acute leukemia. MLL normally associates with a cohort of highly conserved cofactors to form a macromolecular complex that includes menin, a product of the MEN1 tumor suppressor gene, which is mutated in heritable and sporadic endocrine tumors. We demonstrate here that oncogenic MLL fusion proteins retain an ability to stably associate with menin through a high-affinity, amino-terminal, conserved binding motif and that this interaction is required for the initiation of MLL-mediated leukemogenesis. Furthermore, menin is essential for maintenance of MLL-associated but not other oncogene induced myeloid transformation. Acute genetic ablation of menin reverses aberrant Hox gene expression mediated by MLL-menin promoter-associated complexes, and specifically abrogates the differentiation arrest and oncogenic properties of MLL-transformed leukemic blasts. These results demonstrate that a human oncoprotein is critically dependent on direct physical interaction with a tumor suppressor protein for its oncogenic activity, validate a potential target for molecular therapy, and suggest central roles for menin in altered epigenetic functions underlying the pathogenesis of hematopoietic cancers.
    Cell 11/2005; 123(2):207-18. DOI:10.1016/j.cell.2005.09.025 · 32.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the cDNA cloning of Stra13, a novel retinoic acid (RA)-inducible gene from P19 embryonal carcinoma cells that encodes a basic helix-loop-helix (bHLH) protein that shows the highest sequence similarities to the Drosophila Hairy and Enhancer of split and mouse Hes proteins. Stra13 does not bind to the known consensus motifs (E-box and N-box) for bHLH proteins, but can repress activated transcription (through an alpha-helix rich domain) in part by interaction with general factors of the basal transcription machinery. During mouse embryogenesis, Stra13 RNA is expressed in the neuroectoderm, and also in a number of mesodermal and endodermal derivatives. Remarkably, overexpression of Stra13 in P19 cells results in neuronal differentiation in monolayer culture, under conditions where wild-type P19 cells only undergo mesodermal/endodermal differentiation. This neuronal differentiation is accompanied by an altered expression of mesodermal and neuronal markers, indicating that Stra13 could be one of the earliest RA target genes whose expression is required for repression of mesodermal/endodermal differentiation and/or induction of neuronal differentiation when P19 cell aggregates are exposed to RA. Our results raise the possibility that Stra13 could be involved as a repressor in a number of decision events occurring during differentiation of various cell lineages.
    Genes & Development 09/1997; 11(16):2052-65. DOI:10.1101/gad.11.16.2052 · 10.80 Impact Factor
Show more