Article

Realistic 3D coherent transfer function inverse filtering of complex fields.

Biomedical Optics Express (Impact Factor: 3.18). 08/2011; 2(8):2216-30. DOI: 10.1364/BOE.2.002216
Source: PubMed

ABSTRACT We present a novel technique for three-dimensional (3D) image processing of complex fields. It consists in inverting the coherent image formation by filtering the complex spectrum with a realistic 3D coherent transfer function (CTF) of a high-NA digital holographic microscope. By combining scattering theory and signal processing, the method is demonstrated to yield the reconstruction of a scattering object field. Experimental reconstructions in phase and amplitude are presented under non-design imaging conditions. The suggested technique is best suited for an implementation in high-resolution diffraction tomography based on sample or illumination rotation.

0 Bookmarks
 · 
160 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a theory to extend the classical Abbe resolution limit by introducing a spatially varying phase into the illumination beam of a phase imaging system. It allows measuring lateral and axial distance differences between point sources to a higher accuracy than intensity imaging alone. Various proposals for experimental realization are debated. Concretely, the phase of point scatterers' interference is experimentally visualized by high numerical aperture (NA = 0.93) digital holographic microscopy combined with angular scanning. Proof-of-principle measurements are presented by using sub-wavelength nanometric holes on an opaque metallic film. In this manner, Rayleighs classical two-point resolution condition can be rebuilt. With different illumination phases, enhanced bandpass information content is demonstrated, and its spatial resolution is theoretically shown to be potentially signal-to-noise ratio limited.
    Journal of Biomedical Optics 10/2011; 16(10):106007. · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the use of spatially incoherent illumination to make quantitative phase imaging of a semi-transparent sample, even out of the paraxial approximation. The image volume electromagnetic field is collected by scanning the image planes with a quadriwave lateral shearing interferometer, while the sample is spatially incoherently illuminated. In comparison to coherent quantitative phase measurements, incoherent illumination enriches the 3D collected spatial frequencies leading to 3D resolution increase (up to a factor 2). The image contrast loss introduced by the incoherent illumination is simulated and used to compensate the measurements. This restores the quantitative value of phase and intensity. Experimental contrast loss compensation and 3D resolution increase is presented using polystyrene and TiO<sub>2</sub> micro-beads. Our approach will be useful to make diffraction tomography reconstruction with a simplified setup.
    Optics Express 04/2014; 22(7):8654-71. · 3.55 Impact Factor

Full-text (2 Sources)

View
73 Downloads
Available from
May 27, 2014