Article

Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

Nature (Impact Factor: 42.35). 08/2011; 476(7359):214-9. DOI: 10.1038/nature10251
Source: PubMed

ABSTRACT Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.

0 Bookmarks
 · 
816 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association study (GWAS) provides a powerful tool for investigating the genetic architecture of human polygenic diseases and is generally used to identify the genetic factors of disease susceptibility, clinical phenotypes, and treatment response. The differences in allele frequencies of single nucleotide polymorphisms (SNPs) distributed throughout the genome are analyzed with a microarray technique or other technologies that allow simultaneous genotyping at several tens of thousands to several millions of SNPs per sample. Owing to its power to find out highly reliable differences between patients and controls, GWAS became a common approach to identification of the genetic susceptibility factors in complex diseases of a polygenic nature. Using multiple sclerosis (MS) as a prototype complex disease, the review considers the main achievements and challenges of using GWAS to identify the genes involved in the disease and, therefore, to better understand the pathogenetic molecular mechanisms and genetic risk factors.
    Molecular Biology 07/2014; 48(4):496-507. DOI:10.1134/S0026893314040037 · 0.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The TAM receptors-Tyro3, Axl, and Mer-comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands-Gas6 and Protein S-are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, theyact as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies.
    Cold Spring Harbor perspectives in biology 11/2013; 5(11):a009076-a009076. DOI:10.1101/cshperspect.a009076 · 8.23 Impact Factor
  • Aktuelle Neurologie 04/2012; 39(03):116-126. DOI:10.1055/s-0032-1306359 · 0.32 Impact Factor

Full-text (3 Sources)

Download
215 Downloads
Available from
May 27, 2014